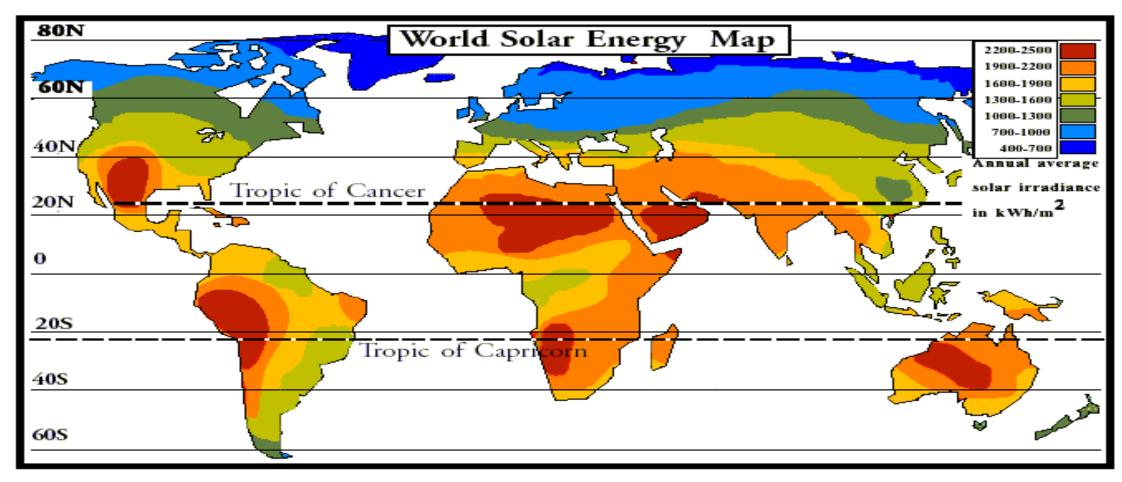
An analysis between the state of solar energy development in Europe and the United States

By

ROSENBLIT, VINCENT, WILSON, XU, YONEZAWA Fazil Najafi

Total Energy Consumption


- Averages for 4 year range (2008-12):
- Europe: 82.81 Quadrillion BTU's per year
 - US: 96.88 Quadrillion BTU's per year

Solar Energy Zones (SEZ's)

Key environmental considerations for deciding SEZ's

- Minimal site development
- Not currently being cultivated or otherwise occupied
- Uniform open land
- Optimal sunlight exposure
- Ideal SEZ will experience minimum 6 hours sunlight and 6+ kWh / m² / day

Regions With High Intensity Sunlight

Solar map depicts regions with highest intensity (seen in red). (Notice SW region of United States.)

Cost Comparison: US vs. EU

	United States		Europe
CAPEX	\$3,873 - \$5,067/kW	CAPEX	\$3,050-\$3,500/kW
OPEX	\$67/kW	OPEX	\$35/kW

Conclusions and Recommendations

- US retains a vast area with large potential of developing solar energy
- Even with lower average solar irradiation when compared to the US, the European Union has been tremendously successful at developing solar energy technologies
- Take away lessons from Europe for the US to be successful:
 - Reduction in capital costs and proper financial incentives
 - A reduction of GHG emissions from the manufacturing process
 - Careful placement of production through proper land use compatibility and community buy-in