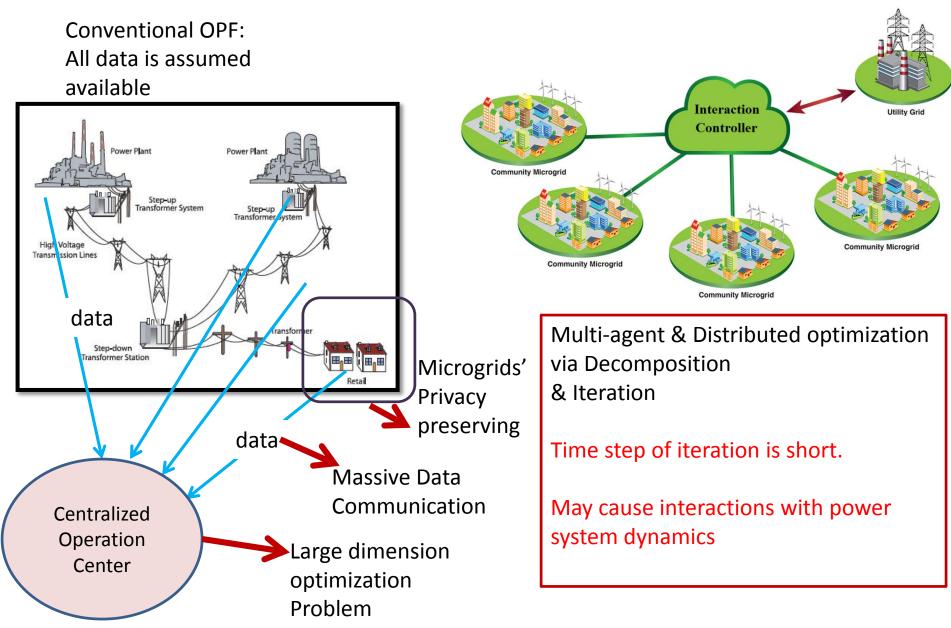
Analysis of Coupling Dynamics for Power Systems with Iterative Discrete Decision Making Architectures

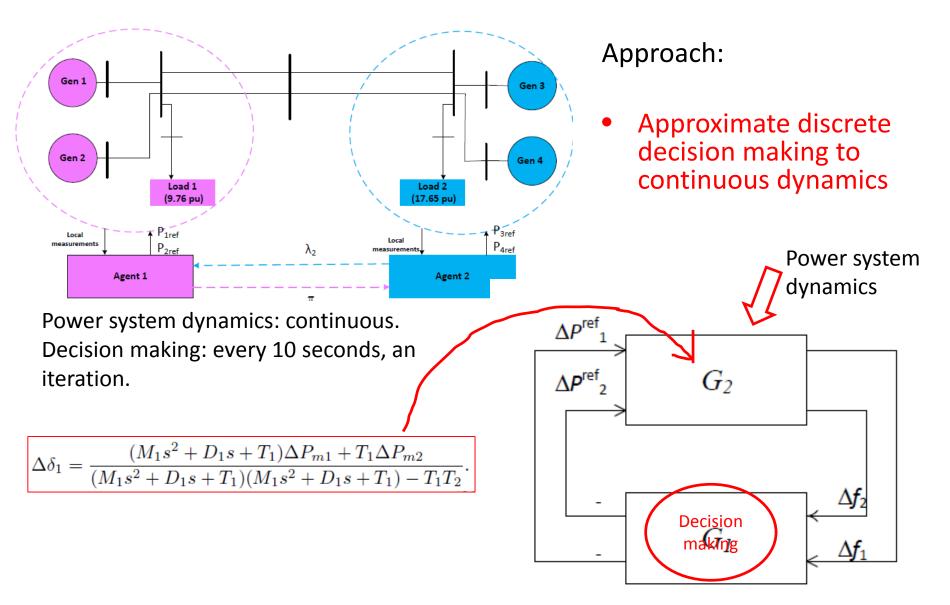
FESC Workshop Presentation, May 21, 2015 Zhixin Miao

Assistant Professor Smart Grid Power System Lab University of South Florida http://power.eng.usf.edu

Why Distributed Control?



How to analyze coupled system dynamics?



Approximate iterative procedures by continuous dynamics

Solve an economic dispatch problem using consensus + subgradient algorithm $\min C_1(P_1) + C_2(P_2)$

min $C_1(P_1) + C_2(P_2)$ subject to: $P_1 + P_2 = D_1 + D_2$

It's dual problem:

$$\max_{\lambda} \min_{P_1, P_2} C_1(P_1) + C_2(P_2) + \lambda(D_1 - P_1 + D_2 - P_2)$$

Consensus + subgradient --- not that frequency deviation is used to represent

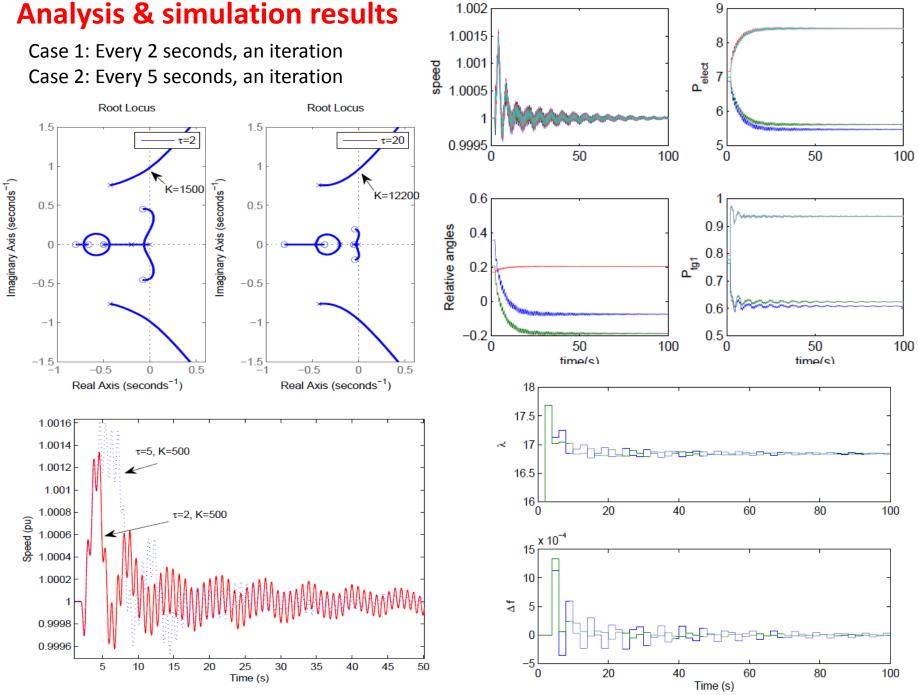
power imbalance.
$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}^{k+1} = A \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}^k - K \begin{bmatrix} \Delta f_1 \\ \Delta f_2 \end{bmatrix}$$

$$\lambda_{1} = 2a_{1}P_{1} + b_{1}$$

$$\lambda_{2} = 2a_{2}P_{2} + b_{2}$$

$$\begin{bmatrix}P_{1}\\P_{2}\end{bmatrix}^{k+1} + \begin{bmatrix}\frac{b_{1}}{2a_{1}}\\\frac{b_{2}}{2a_{2}}\end{bmatrix} = A\left(\begin{bmatrix}P_{1}\\P_{2}\end{bmatrix}^{k} + \begin{bmatrix}\frac{b_{1}}{2a_{1}}\\\frac{b_{2}}{2a_{2}}\end{bmatrix}\right) - K\begin{bmatrix}\frac{\Delta f_{1}}{2a_{1}}\\\frac{\Delta f_{2}}{2a_{2}}\end{bmatrix}$$

$$\begin{bmatrix}\Delta P_{1}\\\Delta P_{2}\end{bmatrix} = -(\tau s - A + I)^{-1}\begin{bmatrix}\frac{K}{2a_{1}} & 0\\0 & \frac{K}{2a_{2}}\end{bmatrix}\begin{bmatrix}\Delta f_{1}\\\Delta f_{2}\end{bmatrix}$$



Analysis & simulation results