Monday, May 12, 2014 DEVELOPMENT AND CHARACTERIZATION OF NOVEL METAL CHLORIDE THERMAL STORAGE MEDIA WITH ENHANCED HEAT TRANSFER

Philip D. Myers, Jr.^{1,3}

D. Yogi Goswami^{1,3}

Elias Stefanakos^{2,3}

¹Department of Chemical and Biomedical Engineering, University of South Florida ²Department of Electrical Engineering, University of South Florida ³Clean Energy Research Center

Introduction: The need for TES

- Renewable energy technologies, most notably solar thermal power, suffer from intermittency:
 - Insolation limited to daylight hours
 - Cloud cover / other atmospheric variability
- Thermal energy storage (TES) strategies are needed to account for this intermittency
- Typical storage strategy involves harnessing peak energy output for use during lag periods.¹

Daily solar energy generation / storage¹

¹ M. Medrano, A. Gil, I. Martorell, X. Potau, and L. F. Cabeza, "State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies," *Renewable & Sustainable Energy Reviews*, vol. 14, pp. 56-72, Jan 2010.

Inorganic salt-based TES

Inorganic salt TES media (e.g., nitrates, chlorides) hold promise as ...

- Heat transfer fluids (dual-tank storage) ("Solar salt")
- Phase-change media (PCM) (e.g., packed bed)

BUT, they have low thermal conductivity

- ~ 1 W/m-K²
- Compare to various metal oxides (10-100 W/m-K) and elemental metals (>100 W/m-K)
- Lowers charging / discharging rates of TES system

Thermal conductivity, melting point of some candidate molten salts²

² A. Hoshi, D. R. Mills, A. Bittar, and T. S. Saitoh, "Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR," *Solar Energy*, vol. 79, pp. 332-339, 2005.

Novel concept: Additives to enhance radiative heat transfer

- As solar thermal plants (power tower) reach higher temperatures / efficiencies, higher melting salts will be needed
- (K-Na)Cl eutectoid is ideal candidate
 - $T_m = 658^{\circ}\text{C}$ $\Delta H_{fus} = 278 \text{ J/g}$
 - Inexpensive

We add IR active compounds (e.g., CoCl₂) to absorb thermal radiation, improve ^a overall heat transfer rates

³ M. Strauss, "Take a Look at the World's Largest Solar Thermal Farm," *Smithsonian Magazine*, Nov 2012 (http://www.smithsonianmag.com/science-nature/take-a-look-at-the-worlds-largest-solar-thermal-farm-91577483/).

High temperature IR reflectance apparatus

• Test of efficacy of IR absorption in molten salt: CoCl₂ absorption coefficient

