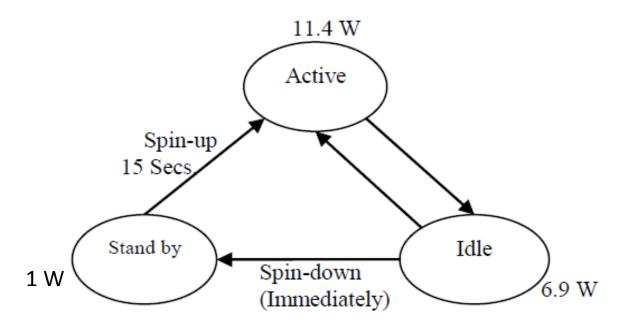
Dynamic Power-Aware Disk Storage Management in Database Servers

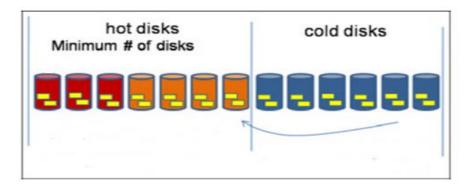
Presented by:

Peyman Behzadnia
Department of Computer Science and Engineering
University of South Florida

Motivation

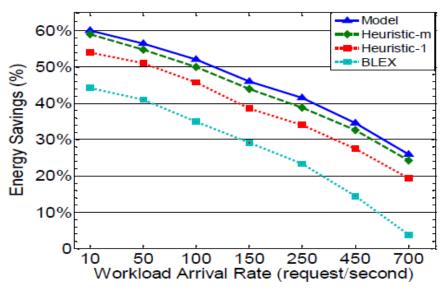

- Data centers consume massive and growing amount of energy (91 billion kWh, 7.5 billion US dollars in 2013).
- The major energy consumer component is disk storage system of Database Management System (DBMS)
- Green Disk Storage Movement: Dynamic Power Management (DPM) techniques are the most common methods used for saving energy.

Disk Power Modes and Specifications


Mode	Rotation Speed (RPM)	Power (W)
Active	7200	11.4
Stand By (sleep)	3600	1

Optimization DPM Model

- Key idea of an effective DPM technique:
 - ✓ Dynamically transitions disks to lower-power mode when experiencing long idle periods
 - ✓ Extends the idle periods by data packing technique


- The integrated optimization model dynamically determines the disk state configuration and inter-disk data migration
- The fast heuristic DPM algorithms find near-to-optimal solution



Experimental Simulation Results:

- Power Saving Results
 - Model: up to 60%
 - Heuristic-m: up to 58%
 - Heuristic-1 : up to 54%
 - BLEX: up to 44%
- Response Time Results
 - Model: Shortest
 - Heuristic-1: 2nd shortest
 - Heuristic-m: close to 2nd
 - BLEX: Longest

