Exergy Analysis of Latent Heat Thermal Energy Packed Beds

> Francesca Moloney University of South Florida

Introduction

Problems

Global warming

Energy availability versus demand

Cost

Solutions

Green energy

Use as base load Implement storage

Latent Heat storage

Analysis - Modeling

Results

Exergy Efficiency vs Flowrate and Particle Diameter

Difference between Energy and Exergy

ſ	Flowrate	Particle Diameter (mm)			
	(m ³ /hr)	30	50	70	100
	90	0.5%	0.5%	0.7%	0.7%
	110	0.5%	0.6%	0.7%	0.8%
	130	0.5%	0.6%	0.7%	0.8%

Conclusion

- Lower particle size has less energy to exergy losses
- Increasing the flowrate or decreasing the particle size increases the exergy efficiency
- Room for optimization
- Affect of temperature ranges should be analyzed