Power-Aware Database Disk Storage System

Presented By: Dr. Yicheng Tu Department of Computer Science and Engineering University of South Florida

Motivation

- Data centers consume considerable amount of energy (61 billion kWh, 45 billion US dollars in 2006).
- The major consumer of the data centers is the database disk storage component (25%- 35%) called *Disk Farm*.
- The Green Computing Movement: Dynamic Power Management (DPM) techniques are commonly used for saving energy in disks storage systems.

Dynamic Power Management

- Key idea:
 - ✓ Most frequently accessed data (*hot data*) stored on *hot disks*
 - ✓ Transition other disks into sleep mode (*cold*)
- DPM algorithms determine dynamically when
 (1) the disk should be transitioned to *cold* state
 (2) certain data should be stored in particular *hot* disks

Hard Disks Specifications

Mode	Rotation Speed (RPM)	Power (W)
Active	12000	39
Stand By (sleep)	3600	4.15

Experimental Simulation Results

- F: hot data spread out factor, λ : workload intensity
- F =1: the worst performance vs. the most power saving
- F= 10: the best performance vs. the worst power saving
- Mid-range F: reasonable power-performance trade-off

 ✓ Main Green Result: <u>A 25-72% energy savings can be achieved</u> with little performance degradation.

