

Thermodynamics and nonlinear mechanics of materials with photoresponsive microstructure

William S. Oates and Jonghoon Bin Florida Center for Advanced Aero Propulsion (FCAAP) Florida A&M/Florida State University Department of Mechanical Engineering Tallahassee, FL 32310

Acknowledgements: NSF CAREER, AFOSR

FESC Workshop, May 12-13, 2014

Motivation

Gasoline energy density: 34 GJ/m³ Solar energy density: ~1 GJ/m³

Assumptions: 1 sec dwell time of 1 W/cm² into 10 μ m thick material Nominal solar radiation: 0.1 mW/cm²/nm

H. Koerner et al., Materials Today, 11(7-8), pp. 34-42, 2008.

Material Concept

- Light activated adaptable structures
 - Temporal and spatial shape control
 - Remote actuation (line of sight)
- Microstructure
 - Liquid crystal polymer network
 - Design of morphing via microstructure
- Constitutive behavior
 - Polymer—liquid crystal coupling
 - Photoisomerization

Dichroic Absorption

Trans state

K.-M. Lee, et al., J. Mat. Chem., 22: 691, 2012.

0