Cultivation and Optimization of Saline Microalgae BG0011 for Production of Biofuels and Bioproducts

Yingxiu Zhang Advisor: Dr. Pratap Pullammanappallil Dr. Spyros Svoronos; Dr. Edward Phlips Agricultural&Biological Engineering University of Florida May, 2015

Why Algae?

- Does not compete with food resources
- Can be cultivated on marginal lands to save arable lands
- Grow faster than traditional crops

Synechococcus BG0011

Photograph for different cell densities of *Synechococcus* sp. BG0011

- Species: Unicellular cyanobacterium,
 Synechococcus sp.
- **Find location**: Isolated from epiphytic samples collected in the Florida Keys

Unique Characteristics:

- Nitrogen fixation
- High salinity tolerance (10-70psu)
- Secrete exocellular biomaterial (ECB)

An attractive candidate for production of biofuels and bioproducts

Objectives

- To optimize algal growth by changing several factors, such as light intensity, CO₂ concentration, phosphorous concentration.
- To minimize economic input by replacing the expensive buffer 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) to some cheap alternatives(e.g. NaHCO₃).

Methods

Light intensities (unit:μmol photon m⁻² s⁻¹):

- 1) Low light: 20 vs. High light:438 (sparged with air or air+1% CO₂)
- Pive different light intensities (sparged with air only)

CO₂ concentration:

1) air; 2) air+1% CO₂; 3) air+5% CO₂

K₂HPO₄ concentration:

1) 0.012 g/L; 2) 0.024 g/L; 3) 0.05 g/L; 4) 0.1 g/L

Changing HEPES buffer to NaHCO₃ buffer

Four PBRs for algae batch cultures

Results

Figure 4. Biomass dry weight under air (2 L/min) at light intensity (umol photon m⁻² s⁻¹) of 315 (R1, R2), 241 (R3), 183 (R4), 139 (R5) and 106 (R6).

Figure 5. Relationship between μ_{max} and light intensity.

Figure 6. ECB dry weight under air (2 L/min) at light intensity (μ mol photon m⁻² s⁻¹) of 315 (R1, R2), 241 (R3), 183 (R4), 139 (R5) and 106 (R6).

 Increasing light intensity increased algae cell density and maximum specific growth rate(μ_{max}). Before reaching the light intensity saturation point, μ_{max} is proportional to the light intensity.

Conclusion

- **Light experiment:** Increasing light intensity increased algae cell density and maximum specific growth rate(μ_{max}). Before reaching the light intensity saturation point, μ_{max} is proportional to the light intensity.
- CO_2 experiment: Under high light, enriched with 1% CO_2 content of air does improve cell density. However, μ_{max} was not affected. Cell density was not improved at 5% CO_2 compared to 1% CO_2 .
- P experiment: As phosphorous concentration increases, cell density increases but ECB content does not increase appreciably.
- Buffer Experiment: From long term cultivation, NaHCO₃ buffer can be used to instead of HEPES buffer.
- A total 8 g/L of organic matter is obtained which can be used as feedstock for biofuels and bioproducts.

Email: yzhang88@ufl.edu