Bridging Gap between Modern Grid Design, Operations and Software

Marija Ilic <u>milic@ece.cmu.edu</u> May 21, 2015 FESC, Orlando FL (invited Keynote)

Disclaimer: Highly personal take at the state of the field; Acknowledgment to EESG Ilic group <u>http://www.eesg.ece.cmu.edu/</u>

The big picture

- (Electric) energy systems—the industry in evolution
- Driven by technology, changing societal goals and industry restructuring ("wicked", ill-conditioned complex problems)
- Smart grids design, operations and software-- the case of IT enabling sustainable industry evolution?
- Motivating example Azores Islands (Flores and Sao Miguel)
- The main challenge/idea —from constraining to enabling in a multi-stakeholders environment
- A possible unifying approach?--next generation SCADA with well-defined protocols (Dynamic Monitoring and Decision Systems (DyMonDS))
- Key relevance of simulation-based scalable test beds. Smart Grid in a Room Simulator (SGRS) –NIST collaboration with CMU/EESG approach to moving forward <u>http://www.eesg.ece.cmu.edu/</u>

The system works today, but...

- Increased frequency and duration of service interruption (effects measured in billions)
- Major hidden inefficiencies in today's system (estimated 25% economic inefficiency by FERC)
- Deploying high penetration renewable resources is not sustainable if the system is operated and planned as in the past (``For each 1MW of renewable power one would need .9MW of flexible storage in systems with high wind penetration" –clearly not sustainable)
- Long-term resource mix must serve long-term demand needs well

Contextual complexity facing design and operations

Broader role of information technology (IT) in transforming ill-conditioned into well-structured design problems [3]

• Observations relevant for smart grid R&D agenda

--Real gap between the needs and innovation methods

- <u>http://energy.gov/epsa/quadrennial-energy-review-qer;</u> <u>http://www.energy.gov/epsa/initiatives/revolution-now</u>
- --Particularly striking lack of viewing the problem as system design problem with many stakeholders and with an eye on potential for software-enabled novel architectures (new SCADA)
- --The main challenge: Making the case for systems R&D&D
- --Our belief: The main opportunity to modernize by al stakeholders (including utilities—major role); next generation SCADA as the main enabler (utility role)

Broad role of smart grids--Making the most out of the naturally available resources given socio environment?

Fig. 1. The core subsystems in a framework for analyzing social-ecological systems.

"Smart Grid" ← → electric power grid and IT for enabling sustainable energy SES

Energy SES

- Resource system (RS)
- Generation (RUs)
- Electric Energy Users (Us)

Man-made Grid

- Physical network connecting energy generation and consumers
- Needed to implement interactions

Man-made ICT

- Sensors
- Communications
- Operations
- Decisions and control
- Protection

Integrating combination of technologies at value?

- Value is a system-dependent concept (time over which decision is made; spatial; contextual)
- Cannot apply capacity-based thinking; cannot apply short-run marginal cost thinking
- Reconciling economies of scope and economies of scale
- Value of flexibility (JIT, JIP, JIC)
- Hardware, information, decision-making software; distributed, coordinated –all have their place and value

Low hanging fruits and longer term goals

- Higher utilization of available physical capacity by embedding IT into various system components, multi-directional information exchange and IT-enabled decision making by all
- Minimal coordination could go a very long way to ensuring sustainable services (potential for avoiding blackouts)

Minimal IT coordination could have avoided 2003 blackout...[5]

Value of real-time data driven automation (PMUs,WAMS)?

Motivating example--Azores Island, Flores

Figure 1: Satellite image of Flores Island.

llic et al, 2013 [7,8]

Motivating example---From old to new paradigm— Flores Island Power System, Portugal

Controllable components—today's operations (very little dynamic control, sensing)

H – Hydro

D – Diesel

W – Wind

*Sketch by Milos Cvetkovic

Information exchange in the case of Flores---new (lots of dynamic control and sensing)

Opportunities/incentives for value-based innovation by all?

- Proof-of-concept-low-cost clean Azores islands
- Enable integration/use of clean energy (wind, PVs) at value
- Different stakeholders bring different value
- Utilities are key to designing enabling delivery at value

- new software/SCADA to gather binding info about who needs what and willingness to pay/be paid; minimal secure info to enable exchange to invest/operate at well-defined value; minimal coordination to optimize system performance and ensure reliability given info from grid users

-possible to give incentives for voltage optimization of T&D equipment; reconfiguration; deployment of remote switching/control/monitoring;

The need for qualitatively new paradigm

- The old ways of looking at problems no longer work.
- To understand the wicked problems requires much more sophisticated perspectives that include what previously was ignored.
- Without this understanding there will be no sustainable innovation.
- Individual actors concerned with their own objectives sub-optimize.
- Evolution of the system is/should be of interest.
- Potential for system evolution from rigid hierarchically controlled entity (dominated by (N-1) preventive approach) to a more dynamic real-time optimized and information-driven entity of greater long-term robustness and efficiency.

The main challenge/idea –from constraining to enabling in a multistakeholders environment

Single optimization subject to constraints	Enabling (reconciling) tradeoffs
Schedule supply to meet given demand	Schedule supply to meet demand (both supply and demand have costs assigned)
Provide electricity at a predefined tariff	Provide electricity at QoS determined by the customers willingness to pay
Produce energy subject to a predefined CO ₂ constraint	Produce amount of energy determined by the willingness to pay for CO ₂ effects
Schedule supply and demand subject to transmission congestion	Schedule supply, demand and transmission capacity (supply, demand and transmission costs assigned)
Build storage to balance supply and demand	Build storage according to customers willingness to pay for being connected to a stable grid
Build specific type of primary energy source to meet long-term customer needs	Build specific type of energy source for well- defined long-term customer needs, including their willingness to pay for long-term service, and its attributes
Build new transmission lines for forecast demand	Build new transmission lines to serve customers according to their ex ante (longer- term) contracts for service

A possible unifying approach?--next generation SCADA with well-defined protocols

Diverse users

A) Grandma's House: Smart Metering, Automation for Appliances

C) Sunny Place 2: Solar Panel, Backup Power, Storage

D) Cold Place: Backup Power, Micro CHP

E) Green Factory: Automation, Proximity to Wind Farm

System paradigm change

Figure 7.7 System paradigm change in the electricity sector

Dynamic Monitoring and Decision Systems (DyMonDS)

- From single top-down coordinating management to the multi-directional multi-layered interactive IT exchange. [7,8,17]
- At CMU we call new transformed SCADA Dynamic Monitoring and Decision Systems (DYMONDS) and have formed a Center to work with industry and government on: (1) new models to define what is the type and rate of key IT exchange; (2) new decision tools for self-commitment and clearing such commitments. \http:www.eesg.ece.cmu.edu.

T&D as an Enabler

- New dispatch of self-committed resources together with on-line power factor/voltage compensation will make it possible to fit different pieces of the puzzle together. [7,8,17]
- Much more reliance on distributed sensing, actuation and coordinated management of these resources. Real time awareness of D flows.
- No models, no simulations, no decision tools. Without these, it will be much more costly to proceed. R&D ahead of us.

DYMONDS-enabled Physical Grid

Smart users

C) Sunny Place 2: Solar Panel, Backup Power, Storage

D) Cold Place: Backup Power, Micro CHP

E) Green Factory: Automation, Proximity to Wind Farm

Examples of iBAs—new ways of ensuring both reliable and efficient operations

Possible to create iBAs for meeting transient stability distributed standard

S.Baros, M.Ilic intelligent Balancing Authorities (iBAs) for Transient Stabilization of Large Power Systems IEEE PES General Meeting 2014

37

Must simplify!

- Utilities are having hard time adding all these new components and their smarts for simulating system-wide dynamics
- Is there a ``smarter" way to model and define modular functionalities so that the interconnected system meets system-level performance? (university R&D role)
- Simulators to assess/demonstrate potential benefits from innovation before building
- Do not oversimplify!

Key relevance of simulation-based scalable test beds (Flores Island case) [18]

 Based on prices, market computes active power set points P* from each component

Flores Island – Essential to exchange the right binding info

- Since currently the market does not specify reactive power set points Q*, data for Q* is randomly created
- Place a voltage source inverter and the variable speed drive on the hydro and diesel generator buses
- Control the sum of the power out of the hydro and diesel generators to match the active and reactive power set points

Simulation Results – Combining Dynamics and ALM

Stable Case:

Unstable Case:

Transient Stabilization of Interactions Using PMUs/ FACTS [13]

Response of Uncontrolled System

M. Cvetkovic, M. Ilic, "Cooperative Line-flow Power Electronics Control for Transient Stabilization", IEEE Conference on Decision and Control, December 2014.

Controlled System Response

M. Cvetkovic, M. Ilic, "Cooperative Line-flow Power Electronics Control for Transient Stabilization", IEEE Conference on Decision and Control, December 2014.

Maximizing Reliable Service by Coordinated Islanding and Load Management

CMU Smart Grid in a Room Simulator (SGRS) Integration of Smart Consumers (DER) [14,18]

Concluding thoughts—hidden value of "smarts"-Enablers of....

- Significantly reduced spinning reserves (value of PMUs, closing the loop with FACTS; automation of storage control)
- Significant improvements in total fuel cost/customers bills while meeting (differentiated) service specifications (value of smart AC OPF software; good state estimator; smart switches)
- Customer choice/grid users choice or service
- Reduced service cost for given service specs
- Warning: It wont work without systematic physics-based modeling/software; new SCADA specifications.

References

- [1] Jelinek, M., Ilic, M., "A Strategic Framework for Electric Energy: Technology and Institutional Factors and IT in a Deregulated Environment", Proceedings of the NSF/DOE/EPRI sponsored Workshop on Research Needs in Complex Interactive Networks, Arlington, VA, December 2000, www NSF/ENG/ECS.
- [2] Marija Ilic, Marian Jelinek, Changing Paradigms in Electric Energy Systems, in The Governance of Network Industries: Institutions, Technology and Policy in Regulated Infrastructures, Studies in Evolutionary Political Economy, editors (Rolf W. Kunneke, John Groenwegen and Jean-Francois Auger, MPG Books Group, UK, 2009, pp. 134-167.
- [3] Detlef Schoder et all, Information Systems for "Wicked Problems"--Research at the Intersection of Social Media and Collective Intelligence, Business & Information Systems Engineering 1/2014.
- [4] Elinor Ostrom, et al, A General Framework for Analyzing Sustainability of Socio-Ecological Systems, Science 325, 419 (2009).
- [5] Ilic, M., E. Allen, J. Chapman, C. King, J. Lang, and E. Litvinov. "Preventing Future Blackouts by Means of Enhanced Electric Power Systems Control: From Complexity to Order." Proceedings of the IEEE, November 2005.
- [6] Marija Ilic, Jason W. Black, Marija Prica. "Distributed Electric Power Systems of the Future: Institutional and Technological Drivers for Near-Optimal Performance" Electric Power Systems Research, Elsevier. Available online Nov 2006 at <u>www.sciencedirect.com</u>.
- [7] Marija Ilic, Jhi-Young Jho, Le Xie, Marija Prica, Niklas Rotering, A Decision-Making Framework and Simulator fir Sustainable Energy Services, IEEE Transactions on Sustainable Energy, vol. 2, No. 1, January 2011, pp. 37-49.
- [8] Ilic, M. D, Le, X., Liu, Q. (co-Eds) Engineering IT-Enabled Sustainable Electricity
- Services: The Tale of Two Low-Cost Green Azores Islands, Springer August 2013
- [9] Ilic, M., Xie, L., Khan, U., Moura, J., Modelling, sensing and Control in Future Energy Systems, IEEE Special Issue in the IEEE Trans. on Systems, Man and Cybernetics, 2008 (invited).
- [10] Ilic, M., Toward a Multi-Layered Architecture of Large-Scale Complex Systems for Reliable and Efficient Man-Made Infrastructures, Proc. of the MIT/ESD Symposium, Cambridge, MA, March 29-31, 2004.
- [11] Marija Ilic, IT-Enabled Electricity Services: The Missing Piece of the Environmental
- Puzzle, Issues in Technology and Policy, 2011 IAP Seminar Series, MIT, Jan., 19, 2011
- [12] S.Baros, M.Ilic intelligent Balancing Authorities (iBAs) for Transient Stabilization of Large Power Systems IEEE PES General Meeting 2014
- [13] Milos Cvetkovic, "Power-Electronics-Enabled Transient Stabilization of Power Systems. PhD thesis, CMU. ECE Department, May 2014
- [14] Siripha Junlakarn, "Differentiated Reliability Options Using Distributed Generation
- and System Reconfiguration, PhD thesis, CMU. EPP Department, May 2015.
- [15] Ilic, et al, CDC 2014, tutorial.
- [16] Marija Ilic, Integration of Heterogeneous Small Test Beds for Emulating Large Scale Smart Power Grids: The Emphasis on Cyber Architectures, MSCPES2014Workshop, Invited keynote Berlin, CPS week, April 14,2014
- [17] Ilic, Marija; Xie, Le; Joo, Jhi-Young, "Efficient Coordination of Wind Power and Price-Responsive Demand Part I: Theoretical Foundations, IEEE Trans. on Power Systems.
- [18] 10th CMU Electricity Conference, Pre-conference Workshop https://www.ece.cmu.edu/~electriconf/