

FLORIDA SOLAR ENERGY CENTER Creating Energy Independence

Moisture and Energy Consequences of a Tight Residential Envelope

2014 FESC Workshop May 12-13, 2014 Gainesville, FL Rob Vieira

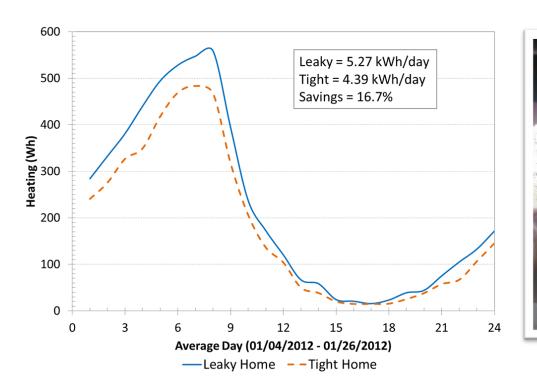
A Research Institute of the University of Central Florida

- Two identical side-by-side 1536 ft², concrete block, slab-on-grade residences
 - Single pane fenestration, evenly distributed
 - No concrete block wall insulation
 - R-19 ceiling insulation
 - SEER-13 w/strip heat HVAC systems
 - Sensible gains ≈ 15.5 kWh/day
 - Latent gains \approx 12.1 lb H₂O/day (1st winter)

Enclosure Air Leakage Set-Up

- Both home enclosures airtightened to achieve 2.1 ach50
- Leaky home configured with 4 controllable ceiling leakage sites providing ~70% of leakage area needed to achieve ~8 ach50
- Remaining 30% of leakage area in leaky home achieved using metal shims at all windows. Attic-side

Ceilingside port

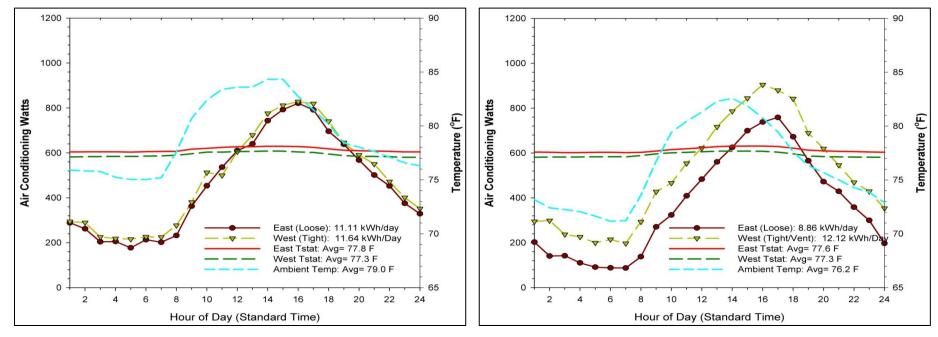


port

Winter Average Day Heating Energy

SEC

Winter Window Condensation Results in Mold in Tight Home



Summer Data: AC energy use October 2012; Tight house unvented and then vented

No mechanical ventilation

Supply 63cfm ventilation

