Nanostructured Chevrel Phase for Magnesium Battery Cathodes

Raymond Scheffler and Wolfgang Sigmund Department of Materials Science & Engineering, University of Florida

The case for magnesium

- Second only to lithium in specific charge
- Advantages over lithium
 - More abundant
 - Less hazardous to the environment
- Magnesium challenges
 - Divalent cation

Nanostructured Materials

- Decreased diffusion length
- Faster charge/discharge

	Li	Mg
Cation valence	+1	+2
Atomic weight (g/mol)	6.94	24.31
lonic radii (nm)	0.068	0.065
Specific charge (A h/kg)	3862	2205
Electrode potential (V)	-3.05	-2.38
Terrestrial abundance (%)	0.006	1.94

Chem. Phys. Chem. 3 (2002), p. 155-159

Nanostructured Chevrel Phase for Magnesium Battery Cathodes

Raymond Scheffler and Wolfgang Sigmund Department of Materials Science & Engineering, University of Florida

Approach

- Magnesium Chevrel phase material
 - $-Mg_2Mo_6S_8$
- Electrospinning
 - Green fibers produced through electrohydrodynamic phenomenon
 - Further size reduction during calcination
 - Submicron sized fibers with grains that are tens of nanometers in diameter

