Robust Security-Constraint Unit Commitment with Dynamic Rating

Anna Danandeh Bo Zeng Brian Buckley

May 20, 15

Unit Commitment Problem

- 1st stage decisions:
 - On/off status
- 2nd stage decisions:
 - Generation level
 - Spinning reserve level
 - Transmission utilization
- Uncertainty set:
 - Ambient air temperature
 - Electricity demand

Remark

- The most important operation problem in the power industry
- NP-hard problem

Dynamic Asset Rating

Necessity

- Impact of weather condition on the capacity of power equipment
 - Wind
 - Radiation
 - Temperature
- Static vs. Dynamic Rating
 - Static: planning based on the constant weather condition
 - Dynamic: updating the utilization based on real-time data

Advantages

- Determine the actual real-time capacity
- Improve system reliability
- Optimize grid utilization

• • • • • • • • • • • •

Dynamic Line Rating

Approximately 10°C increase in the temperature $\rightarrow -11\%$ capacity

Dynamic Generator Rating

Two Stage Robust Optimization Model

 $\begin{array}{l} \label{eq:min_gamma} \textit{min}_{\mathbb{Y}} \left\{ (\textit{Start-up cost \& No-load cost}) \\ + \textit{max}_{\mathbb{A}} \textit{min}_{\mathbb{X}} \textit{ (Fuel cost \& Load shedding penalty)} \right\} \end{array}$

 $\mathbb{Y} = \{ on/off generator status: (Start up), (Min up & down) \}$

 $\mathbb{X} = \{ dispatch \ decision: \ (Ramping), \ (Demand \ satisfaction), (Spinning \ reserve), \ (transmission) \}$

 $\mathbb{A} = \{$ *Temperature & Demand Uncertainty* $\}$