Cooling Channel Analysis to Enhance The Efficiency of Photovoltaic Panels

O. Abakporo, A. Rivera, J.C. Ordonez

FAMU-FSU College of Engineering
Department of Mechanical Engineering

Energy and Sustainability Center (ESC)
Center for Advanced Power Systems (CAPS)

Florida A&M University-Florida State University

FESC Workshop, Gainesville, FL May 2014

Motivation

Efficiency Vs. Temperature

J.K. Tonui, Y. Tripanagnostopoulos, Renewable energy, 32 (2007) 623-637

See our team poster by J.D. Osorio, A. Rivera and J.C. Ordonez

Goal:

- To study different cooling arrangements (geometries)
- Evaluate their impact on PV net power output

Approach-

Modeling Convective Cooling Channels

Brand	SOLARA
Model	SM 200 S
Origin	Germany
Performance	200 Wh/d
Power (P _{mpp})	50 Wp +/-
	10%
System Voltage	12 V
Voltage (V _{mpp})	17.8 V
Open circuit voltage (V _{OC})	21.7 V
Current (I _{mpp})	2.8 A
Short circuit current (I _{oc})	2.98 A
Estimated Albedo Factor (a)	0.30
Area	0.449 m ²

Analysis

Convergence Analysis

Calculation

$$\dot{W}_{total} = \dot{W}_{pv} - \dot{W}_{fan}$$

$$\dot{W}_{pv} = \eta_{pv} I_{solar} A$$

$$\eta_{pv} = 0.147 - 0.0008T_{panel}$$

$$\dot{W}_{fan} = \frac{\Delta P A_{channels} U}{\eta_{fan}}$$

$$\frac{\Delta P}{\rho U^2} = 13.74(x_+)^{1/2} + \frac{1.25 + 64x_+ - 13.74(x_+)^{1/2}}{1 + 0.00021(x_+)^{-2}}$$

$$x_+ = \frac{x/D}{Re_x}$$

Results

Future Work:

- Construct physical apparatus
- Apply to PEMFC
- Perform experimental validation

Acknowledgements:

Obie Abakporo acknowledges with gratitude the financial support from FAMUTitle Three Minority Fellowship and the moral support from The Thermal Management Group, family, friends, and most importantly his faith.