Scaling Relations for Model Scale Testing of Hydrokinetic Ocean Renewable Energy Systems

William Valentine and Karl von Ellenrieder Dept. Ocean & Mechanical Engineering Florida Atlantic University

Research support from Southeast National Marine Renewable Energy Center

2014 Florida Energy Systems Consortium Workshop Gainesville, FL May 12-13, 2014

Motivation

- Most energy-dense portions of strong ocean currents (e.g. Florida Current, Kuroshio Current, Agullas Current) found offshore in deep water (Duerr & Dhanak 2012)
 - Florida Current: ~25-40 km, 320-560 m deep water
 - Systems likely positioned at 50-200 m depths
 - Complex mooring and anchoring systems required
 - Little experimental and practice experience with mooring systems
 - Lab studies of complete moored systems in controlled conditions more costeffective than offshore field tests

Approach

- Model Scaling Procedure of Mavrakos et al. (1995) modified for Froude rather than Reynolds number scaling
- 3 DoF Numerical Simulations Performed in Orcaflex (v9.4 e)
- "Numerical Experiments" performed to evaluate effectiveness of scaling procedure on submerged systems having a single catenary mooring line
 - Prototype: 400m depth; Models: $1/_{40}$ scale and $1/_{10}$ scale

23 m Horizontal Axis Ocean Current Turbine

Excitations

Waves	Parameter	Prototype	$1/40^{\text{th}}$ Model $\varepsilon = 40$	$1/10^{\text{th}}$ Model $\varepsilon = 10$
	Wave Amplitude ς_a [m]	0.675	0.016875	0.0675
	Wave Period T_0 [sec]	7.00	1.107	2.214
	Surface Current Speed U_0 [m/s]	1.6	0.253	0.506

Current Perturbations

Parameter	Prototype	$1/10^{\text{th}}$ Model $\varepsilon = 10$
Water Depth D [m]	400	40
Water Density $\rho_w [kg/m^3]$	1026.9	999.7
Kinematic Viscosity $\upsilon_w [m^2/s]$	1.35x10 ⁻⁶	1.31x10 ⁻⁶
Surface Current Speed U_0 [m/s]	1.6	0.506
Surface Current Perturbation [m/s]	3.2	1.012
Fast Forcing Duration [sec]	37.68	11.92
Slow Forcing Duration [sec]	150.7	47.66
Seabed Stiffness [kg/m ³]	100×10^3	100×10^3

