Air Processed Organic Solar Cells with Efficiency Higher than 7%

Iordania Constantinou¹, Tzung-Han Lai¹, Dewei Zhao¹, Jesse R. Manders¹, Erik D Klump¹, James Deininger², John R. Reynolds² and Franky So^{1*}

¹Department of Materials Science and Engineering, University of Florida

²School of Chemistry and Biochemistry, School of Materials Science and Engineering, Georgia

Institute of Technology

Materials and Device Structure

Photoactive Layer

FIORIDA

PC₇₀BM

Hole Transport Layer

3.9 4.7 ITO 5.2 PEDOT: PSS 5.6 5.6 4.3 4.2 LiF/Al PC₇₁BM

AbsvicetRarfofficiencey

ITO / PEDOT:PSS/ P(DTG-TPD):PC₇₀BM + 5% DIO / LiF / Al What is affecting EQE at shorter wavelengths?

Electrical Effects

$IQE = EQE / \eta_{Abs}$

OEMDlab

Thank you for your attention!

Special Thanks To:

Dr J. R. Reynolds and Georgia Tech team

Acknowledgments:

