

Algae-based Biofuel Production in the Algenol Direct-to-Ethanol® Process
Laura Belicka, Ph.D. and the Algenol Team

July 31, 2017

ALGENOL

The Need for Alternative Fuels

- Renewable fuels strive toward
 - Carbon neutrality
 - Sustainability
 - Energy security
 - Job creation
 - Improved environmental quality
 - Ease of conversion to fossil fuel replacement

The Biofuels Family

1st Generation

- Corn or sugarcane to ethanol
- Competes with food supply
- Major land and water use issues
- Low/moderate impact on greenhouse gas emissions
- Can be cost-competitive with fossil fuels

2nd Generation

- Cellulosic fuels and crop-based biodiesel
- Generally not competing with food supply
- Significant land and water use issues
- Positive impact on greenhouse gas emissions
- Economics can work with incentives

3rd Generation

- Algae to biocrude and/or ethanol
- No competition with food
- Minimal land and water use issues
- Positive impact on greenhouse gas emissions
- Economics still to be proven

Algenol Overview

- Algenol Biotech LLC is an industrial biotech company developing biobased products utilizing algae (founded in 2006)
 - HQ, R&D and manufacturing in Fort Myers, FL
 - R&D facility in Berlin, Germany
- AgTech & Food applications
 - Algae based proteins
 - Natural colorants
 - Proteins for human and animal nutrition
 - Soil treatment
 - Biostimulants
 - Biofertilizers
- Contract research, development, and manufacturing
 - Algal product research and development
 - Synthetic biology: developing cyanobacteria as heterologous expression systems
 - Photobioreactor-based algae products
- Ethanol/biocrude biofuels through synthetic biology

The Algenol Vertical Photobioreactor (PBR)

Low cost systems open up profitable large-scale cultivation

Enclosed production systems industrialize algae cultivation

Highly efficient algae growth

- Each PBR maximizes light distribution and moderates temperature for maximum yields
- High product quality system eliminates contamination from dirt, debris, bird feces, fly larvae and other unwanted substances
- PBRs efficiently deliver carbon dioxide and nutrients to the algal culture
- PBRs systems are configurable to maximize production and economics of desired product
- PBRs limit contamination from other algae species to maintain monoculture conditions
- Greater product concentrations at harvest compared to open ponds
- System automation reduces labor costs
- Proven effectiveness across broad range of algae types

Core Technology: Genetically Enhanced Cyanobacteria

- Algenol's Direct to Ethanol® process uses genetically enhanced cyanobacteria to produce ethanol
 - 2,300 strains collected globally and screened as candidates for development
 - Enhanced natural ability of the algae to produce ethanol by optimizing key fermentation pathways
 - Strains have broad temperature and oxygen tolerance
 - Main product is ethanol, but can also convert residual biomass to hydrocarbon fuels
 - Can also operate in a biomass only mode

Metabolic Pathway for Ethanol Production

Direct linkage of EtOH synthesis to carbon fixation via 5 enzymatic steps

Ethanol Production Gene Cassette

- Key considerations for ethanol cassette design:
 - High PDC and ADH activities lead to increased partitioning of fixed carbon into ethanol
 - Solution: strong promoters, optimized genes
 - Growth of ethanol-producing cells is slower than non-producing cells
 - Fast culture growth is desirable during scale-up phase, but undesirable during ethanol production phase
 - Solution: use an inducible promoter for ethanol genes (especially pdc)

Biological Innovations to Productivity

- Strain engineering: improved productivity with greater carbon branching to ethanol
 - In batch cultivation, growth is greater in wild-type strain
 - As more C is diverted to ethanol, less is available for growth
 - 50% C to ethanol for Strain 1
 - 60% C to ethanol for Strain 2
 - Current branching up to 80%
- Advanced strain engineering: reduce photosaturation and acclimation effects

High Carbon Partitioning into Ethanol

Extended cultivation with high carbon partitioning into ethanol

Life Cycle Analysis

- CO₂ supplied to an Algenol facility via coal flue gas and on-site power generation:
 - The Algenol pathway reduces GHG emissions by 85% compared to fossil fuel

Algenol pathway approved by EPA in 2015

CO₂ Delivery Systems – Life Cycle and Techno-Economic Analyses

- Summary of two additional CO₂ delivery scenarios (out of 15 or so considered)
- All have CO₂ costs of about \$50/tonne according to our technoeconomic analyses

CO ₂ Delivery System Description	GHG reduction (fossil fuel reference)*
Coal Flue Gas Transport with Power Generation	85%
Coal Flue Gas Transport and no Power Generation	23%
CHP unit to supply CO ₂ with CO ₂ storage	84%

^{*}GHG reduction includes total energy produced with a 1 MJ reference to fossil fuel (gasoline plus surplus electricity supplied to natural gas power plant). Note: For all these cases, spent biomass injected (sequestered).

D Luo, et al, Env. Sci. & Tech., 2010, 44 pp 8670–8677

R. Lively, et al, Biofuels, Bioprod. Bioref. 9:72-81 (2015)

Summary

- Algenol has developed a photobioreactor-based production system that is capable of producing biofuels and a variety of algae products
- Algenol's Direct to Ethanol® process uses synthetic biology to produce a renewable biofuel that can have a positive impact on greenhouse gas emissions by replacing fossil fuels
- Our technology achieves high productivity with a large proportion of fixed carbon being incorporated into ethanol
- Algenol's system can be adapted to biomass only applications, allowing production of biocrude and co-products, which is the subject of a recent DOE award to Algenol (partnered with Georgia Tech, NREL and Reliance Industries Limited).

Acknowledgements

Fort Myers Staff

Berlin Staff

This work was supported by the Department of Energy under Award Number DE-EE0007690.