Biofuels: Challenges and Opportunities* *April 2, 2013*

Brent Shanks
Steffenson Professor
Chemical & Biological Engineering Department

^{*} Disclaimer: opinions expressed are those of the speaker

Some Historical Context

IEA Recent Report*

2011 – only 45% crude oil imported

- 2020 U.S. only importing from Canada, U.S. world's largest oil producer*
- 2030 U.S. net oil exporter*

More Context

Petroleum at \$90/bbl

Gasoline, wholesale & untaxed ~\$2.70/gal

Diesel, wholesale & untaxed ~\$3.00/gal

Grain Ethanol, corn at \$3 & \$6.50/bu \$2.40 & \$3.80/gge

Usage (in billions of bushels)	2002/03	2007/08	2012/13
Ethanol	1.10	3.00	5.00
Returned from ethanol to feed	0.36	1.00	1.66
Feed, export, residual, other	8.40	9.80	9.79
Total available for other uses	8.76	10.80	11.45

Biofuels Digest, May 11, 2012

Mark Jones, Dow 2011

Technology Comparison*

- Requires consistent capital cost and evaluation bases
- Comparative economics, not business-case economics
- Considered commercial or "near-commercial" technology where possible
- Material and energy balances by Aspen Plus, generally
- Location U.S. Gulf Coast, 2011 \$
- Biomass at \$5.4/GJ (limit 1 million t/yr/plant)
- Coal at \$2/GJ
- Estimates for N^{th} of a kind plants (N = 5-7)
- Stand-alone plant: Feedstock in; Finished fuels out
- Comparisons are based on best available data; design basis and data are often not very complete

^{*} Jim Katzer (ExxonMobil retired, Iowa State University)

Technology Platforms

- Thermochemical
 - Gasification followed by synthesis to fuels (biomass and/or coal)
 - Pyrolysis followed by upgrading to fuels (biomass)
- Biochemical (biomass)
 - Fermentation of sugars (grain ethanol)
 - Lignocellulose deconstruction/fermentation
 - Algal (lipid) route
- Catalytic conversion of bio-products
 - Catalytic conversion of sugars or other compounds
 - Plant oil-based (soybean or palm oil) routes

Biomass Properties & Fuel Cost Component

Material:	Grain (corn)	Corn Stover	Wood (poplar)
Starch, wt %	72.0	n/m	n/m
Cellulose, wt %	2.4	36	40
Hemicellulose, wt %	5.5	26	22
Lignin, wt %	0.2	19	24
Ash, wt %	1.4	12	0.6
Bio-Conversion:			
Typical Yields: gge/dry	tonne 72	48	50
Thermal-Conversion:			
Gasification Yield, gge/	dry tonne -	67	72
Pyrolysis Yield, gge/dry	tonne -	55	60
Feedstock Cost, \$/dry tonn	e: 255	95	80
Feedstock Cost Componer	nt:		
Bioconversion, \$/	gge 3.50*	\$2.00	\$1.60
Gasification, \$/gg	е -	\$1.40	\$1.10
Fast Pyrolysis, \$/g	gge -	\$1.75	\$1.30

Red numbers are first-cut indicator of feedstock cost contribution to product cost

^{*} For Corn at \$6.50/bu, DDGS netback reduces this to ~\$2.60/gge

Thermochemical: Gasification

- Coal: all components are commercially robust
- Biomass gasification is "essentially commercial"
- Gasification leads to very low criteria emissions, similar to NGCC
- Multiple design and operational options to meet specific objectives
- In place of FT, use methanol synthesis followed by MTG to produce mainly gasoline

Thermochemical: Gasification

Feedstock	Mode	Fuel Price, \$/gge
- Coal (CTL)	Vent CO ₂	1.75
- Coal	CCS	1.90
 Coal/Biomass (40%) (CB 	TL) Vent CO ₂	2.75
 Coal/Biomass (40%) 	CCS	3.00
Biomass (BTL)	vent CO ₂	3.60
- Biomass	CCS	3.85

Fuel Component Cost

Thermochemical: Pyrolysis

- Pyrolysis is "pre-commercial" requiring much further R&D and demonstration
- Approach includes "fast pyrolysis", "fast catalytic pyrolysis", and "hydropyrolysis"
- Being aggressively pursued because of its potential for lower fuel costs
- Lack of demonstration- or commercial-scale data means higher estimate uncertainty
- Biomass HEAT Bio-oil (~40 % O) Hydrogen, Catalyst Fuel (~0 % O) + Water
- Typical yields: bio-oil (60-70 wt % which typically contains 10-15 % water); char (12-15 %), and light gases (13-25 %)
- Bio-oil: density of 1.2 kg/l; acidic with pH of 2.5: ages, ~ 40% O; needs upgrading.

KIOR Fast Catalytic Pyrolysis, 50 ton/day

ENSYN 40 tonne/day fast pyrolysis

Thermochemical: Fast Pyrolysis

- Biomass to liquid fuel energy conversion efficiency is about 37% vs. 47% for gasification
- Estimated capital cost is about 35 % lower than for gasification
- Estimated fuel cost is \$3.40 per gallon gasoline equivalent vs. \$3.60 for gasification
- Largest factors affecting fuel cost are: fuel yield (wt % of bio-oil), biomass cost, and bio-oil yield (wt % of the feed).