Algal Scaling

- 1500 bbl/day amount needed to integrate with refinery
- 25,000 L, 90 m² of solar area: 1-3 kg algae/wk (~3 g/m²/day)

- \rightarrow 7700 acres
- \rightarrow 110 x 10⁶ gallons water/h

Biofuels: Other Platforms

Plant oil based routes

- Technology for conversion of plant oils such as soybean oil or palm oil well established
- Conversion technology not capital intensive
- Costs driven by cost of the plant oil which typically high
- Soybean oil today is \$1200 per tonne, that leads to over \$4.00/gallon feedstock component in total cost of biodiesel
- Raises questions concerning competition for food

Biofuels: Other Platforms

Other Fermentation Routes

- Synthetic biology used to modify yeast or other organisms to make specific products
- Similar to fermentation, feedstock is sucrose
- Cost of Brazilian raw cane sugar gives of order \$3 per gallon of diesel hydrocarbon product (rough estimate)
- Problems with microorganism survival and productivity

Catalytic conversion of other plant products

- Early stages of development
- Need to find abundant plant products that are cheap
- Technology not clear for estimate base

Co-Product Options

Diverse product framework

Research Overview

Renewable Carbon

Biorenewable Chemicals

Pathways to Biorenewables

Fast Pyrolysis

Corn stover (~1.5 GJ m⁻³)

Gas (~6 MJ kg⁻¹)

Bio-oil (~22 GJ m⁻³)

Biochar (~21 MJ kg⁻¹)