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Nicolas Léonard Sadi Carnot. 1796-1832
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Thermal engine
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Drawn after Bejan –AET and Cardwell 
“From Watt to Clausius” 

Engine Efficiencies in times of Carnot
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Sources: Bejan (AET);  and H.B. Callen (T)
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Observed efficiency
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Chambadal (1957)
Novikov (1958)
Curzon & Alhborn (1975)

endoreversible

External irreversibility
Linear heat transfer model

External irreversibility
Linear heat transfer model

Endoreversible model
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Taylor expansion 

Recent studies 
suggest that at 
maximum power
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What is the maximum power that can be extracted 
from a hot stream? What are realistic limits for this 
power?
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reversible 
power 
plant

TH, P0

m.
T0, P0

Q0

.

atmosphere: T0

Wrev

.
If the stream interacts only 
with the atmospheric 
temperature reservoir (T0), 
the maximum power  that 
can be extracted is the flow 
exergy:
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(ideal gas)

The actual power will always be lower than    rev because of 
the irreversibilities of the heat transfer between the hot 
stream and the rest of the power plant.

W

1. Power extraction:
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(i) temperature 
difference between 
the stream (T) and 
the heat exchanger 
surface (Ts) and 

reversible 
power 
plant

TH, P0

m. T0, P0

Q0

.

atmosphere: T0

Tout

Wrev>W
. .

The heat transfer irreversibility is due to:

(ii) thermal mixing of the 
discharged stream.
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The case where the collecting stream is single phase was studied by 
Bejan and Errera, 1998.

We use a second stream to 
collect the power from the 
hot stream. This second 
stream is the working fluid 
of the power producing 
device

power 
plant

Q0

.

atmosphere: T0

W

Hot stream

collecting stream
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Power extraction from a hot stream
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Entropy generation analysis

( ) e00H QQhhmW  −−−=

( ) 0ssm
T
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S H0

0

e0
gen ≥−+

+
= 




gen0H,x STemW  −=

( ) ( )000H0HH,x sThsThe −−−=

Now for the heat exchanger, 
and external cooling alone:
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TH m cp
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water mw
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.
This image cannot currently be displayed.

Qe
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Tout T0
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We can maximize the power output using: 

or directly using 

( )1,x2,x eemW −= 

In dimensionless form:

gen0H,x STemW  −=
minimize

( )
H,x

1,x2,xw

H,x
II em

eem
em
W
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==η
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Maximization of the second law efficiency by selecting the 
mass flow rate of the water stream

m
mw




=

[IJHMT Vargas, 
Ordonez and 
Bejan, 1999]
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Effect of the mass flow rate on the allocation of area among 
the sections of the heat exchanger

m
mw




=

Optimal system 
structure
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Effect of the mass flow rate on the allocation of area among 
the sections of the heat exchanger
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Concluding remarks

• Sadi Carnot, laid out the foundations of 
thermodynamics exploring limits of operation of 
thermal engines that lead to maximum power.

• An interesting question that can be asked is why do 
we observe a pattern in efficiency at maximum 
power?

• This maybe linked to symmetry in physical 
laws
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Concluding remarks

• Chambadal, Novikov, Curzon and Ahlborn derived 
efficiency expression that predicts well performance 
of thermal plants.

• The Novikov–Chambadal-Curzon-Ahlborn 
expression has been derived in different context:
• Classical thermodynamics
• Endoreversible thermodynamics (finite times, 

finite sizes)
• Linear Irreversible Thermodynamics
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Concluding remarks:

• The extraction of power and 
refrigeration from a hot stream  can be 
maximized by properly matching the 
stream with a receiving stream of cold 
fluid, across a finite-size heat transfer 
area

counterflow
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There is an associated optimal allocation of heat 
exchanger inventory:
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Concluding remarks

• System structure appears as a result of 
optimization -> maximization of flow access

• Constructal Design: “Generation of 
architecture under global constraints”
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Thank you!
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Constructal Design: “Generation of architecture under global contraints”

System structure appears as a result of optimization
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Concluding remarks:

How does the optimal area allocation appears in 
practice?
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a) One counterflow heat exchanger, three sections:
The three sections rearrange themselves

b) Three sections, boiling in contact with hottest gases:

Here a ‘morphing’
heat exchanger is 
needed

System structure appears as a result of optimization  (Constructal theory)
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Concluding remarks: Optimal HT area allocation

TH m cp
.

A

watermw
.

Tout

0.66

0.68

0.7

0.72

0.32 0.34 0.36 0.38 0.4 0.42 0.44

 M

η
ΙΙ 

N=10
τ

Η
=4

τ
b
=1.98

τ
1
=1.8

ideal-gas model for steam

tabulated steam properties

0.15

0.2

1 1.5 2 2.5 3 3.5 4 4.5 5

τ
H
 = 4 

τ
L
 = 0.9 

τ
1
 = 1.1

r

q
L

5U~ H LO =

x = 0.2
y = 0.2

0

0.5

1

0.3 0.35 0.4 0.45 0.5

1-x-y=A
w

 /A

y = A
b
 /A

x = A
S
 /A

N=10
τ

Η
 = 4

τ
b
 =1.98

τ
1
 =1.8

M



J.C. Ordóñez

Maximization of the second law efficiency using 
Toluene as working fluid

Duke University
Mechanical Engineering and Material Science Department

J.C. Ordóñez
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Maximum power from a hot stream

• In engineering 
thermodynamics it is 
usually assumed that the 
heat that drives a power 
plant is already available 
from a hot temperature 
reservoir.  

•In most applications a fuel is 
burn, and a hot stream 
becomes the input to the 
power plant.

Wpower
plant

hot

cold

Wpower
plant

cold

combustion

hot stream

- What is the maximum power that 
can be extracted from a hot stream?
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• Power and  refrigeration systems are assemblies of 
streams and hardware (components).

• The size of the hardware is 
constrained.

Thermodynamic optimization methodology:

Rankine power
cycle

Department of Mechanical Engineering
J.C. Ordóñez



J.C. Ordóñez

Each stream carries exergy (useful work content), which is the life blood of the 
power system.  Exergy is destroyed (or entropy is generated) whenever streams 
interact with each other and with components.  Our objective is to optimize the 
streams and components, so that they generate minimum entropy subject to the 
constraints.

fuel

heater
turbine

pump condenser

Department of Mechanical Engineering
J.C. Ordóñez
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THE METHOD OF THERMODYNAMIC OPTIMIZATION

SYSTEM

ENVIRONMENT

-Thermodynamics provides
the basic equations

-Flows, flow resistances, losses 
(irreversibility, “dissipation”) and 
interactions are integrated from 
related disciplinesInteractions

Starts with:

OPTIMIZED SYSTEMMODEL
CONSTRAINED
OPTIMIZATION

Department of Mechanical Engineering
J.C. Ordóñez
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We start from the 1st and  
2nd laws of 
thermodynamics:
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W
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OPTIMIZED SYSTEMMODEL
CONSTRAINED
OPTIMIZATION

Department of Mechanical Engineering
J.C. Ordóñez
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Non-flow exergy

Exergy, heat transfer interactions

Flow-exergy associated to mass flows

The two laws combined (eliminating Q0):
.

In the reversible limit (             ),0Sgen =

(E1)

OPTIMIZED SYSTEMMODEL
CONSTRAINED
OPTIMIZATION

Actual work

Work in the reversible limit
revWW  <

destroyed exergy

``Exergy Analysis”

Department of Mechanical Engineering
J.C. Ordóñez
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gen0revlost STWWW  =−=

Sustracting them we get the  Gouy-Stodola theorem: 
The destroyed power is proportional to the rate of entropy 
generation.

(E.3)

EGM starts from  (E.3).  We want to be as close as possible 
to the reversible limit (       ), then we should work in the 
minimization of the entropy generation (      ).

revW

genS

OPTIMIZED SYSTEMMODEL
CONSTRAINED
OPTIMIZATION

Department of Mechanical Engineering
J.C. Ordóñez
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CONSTRAINED OPTIMIZATION
function, constraints and degrees of freedom

The FUNCTION to be optimized, 
is related to PURPOSE  e.g:

-Max. power extraction
-Min.  power requirement
-Max. of exergy collection
-Min.  ratio destroyed
exergy/ supplied exergy

OPTIMIZED SYSTEMMODEL
CONSTRAINED
OPTIMIZATION

CONSTRAINTS.  e.g:
Total volume, area, 
material amount, operation
temperatures.

DEGREES OF FREEDOM
-Operation temperatures
-Charging/discharging times
-Dimensions, thickness
-Spacing among components
-Material properties

Department of Mechanical Engineering
J.C. Ordóñez
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The total surface constraint (c1), can be written as,

w
w

s
b

b

s
s N

U
U

N
U
U

NN µ′++µ=
p

s

cm
AU

N


= constant

A
A

x s=

A
A

y b=

A
A

yx1 w=−−

In the numerical computations, we defined the following 
area fractions

superheater (steam)

boiling

Preheater (liq. water)

The equations we have until now allow us to compute the 
temperature distribution.  We need the work output.

Department of Mechanical Engineering
J.C. Ordóñez

OPTIMIZED SYSTEMMODEL
CONSTRAINED
OPTIMIZATION
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Constrained optimization:

w
w

s
b

b

s
s N

U
U

N
U
U

NN µ′++µ=
p

s

cm
AU

N


= constant

A
A

x s=

A
A

y b=

A
A

yx1 w=−−

In the numerical computations, we defined the following area fractions

superheater (steam)

boiling

Preheater (liq. water)

The equations we have until now allow us to compute the temperature 
distribution.  We need the work output.

Department of Mechanical Engineering
J.C. Ordóñez

OPTIMIZED SYSTEMMODEL
CONSTRAINED
OPTIMIZATION

The total area constraint, can be written as,
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Concluding remarks (1/3):

• The extraction of power from a 
hot stream  can be maximized by 
properly matching the stream with a 
receiving stream of cold fluid, across 
a finite-size heat transfer area

counterflow
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There is an associated optimal allocation of heat 
exchanger inventory:
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We want to search for an 
optimal matching between 
the streams.

Thermodynamic optimization

SYSTEM

ENVIRONMENT

-Thermodynamics provides
the basic equations

-Flows, flow resistances, losses 
(irreversibility, “dissipation”) and 
interactions are integrated from 
related disciplinesInteractions

Starts with:

OPTIMIZED SYSTEMMODEL
CONSTRAINED
OPTIMIZATION
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A

m cp
.

TH
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Tout

T1

TbTb

cs

cw

A s A b A w

steam 
superheating boiling liquid water 

preheating

heat transfer 
surface

mw
.

0

Temperature distribution along the three
sections of the heat exchanger

The case where the collecting 
stream experience a phase change
was studied by Vargas, Ordonez 
and Bejan (IJHMT, 1999).

Florida State University, 
J.C. Ordóñez, S. Chen
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Heat transfer analysis 
classical effectiveness Ntu analysis

Superheater Boiling Preheating
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OPTIMIZED SYSTEMMODEL
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OPTIMIZATION
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The total area constraint

can be written as,

w
w

s
b

b

s
s N

U
U

N
U
U

NN µ′++µ=

p

s

cm
AU

N


=

TH m c p
.

A

Tout

OPTIMIZED SYSTEMMODEL
CONSTRAINED
OPTIMIZATION

Constrained optimization:

In the numerical computations, we 
defined the following area fractions

A
A

x s=

A
A

y b=

A
A

yx1 w=−−

superheater (steam)

boiling

Preheater (liq. water)

Maximize power extraction (efficiency)

For fixed total area, A

Degree of freedom, wm
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OPTIMIZED SYSTEM
MODEL

CONSTRAINED
OPTIMIZATION
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Heat transfer analysis 
classical effectiveness Ntu analysis

Superheater Boiling Preheating
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Maximization of the second law efficiency by selecting the 
mass flow rate of the water stream

Duke University
Mechanical Engineering and Material Science Department

J.C. Ordóñez

m
mw




=
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Effect of the mass flow rate on the allocation of area among 
the sections of the heat exchanger

Duke University
Mechanical Engineering and Material Science Department
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m
mw




=
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Effect of the heat transfer area size on the “match” between the 
temperature distributions of the two streams
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Effect of heat exchanger size on the second law efficiency and on 
the allocation of heat transfer area

Duke University
Mechanical Engineering and Material Science Department

J.C. Ordóñez
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Effects of varying the working-fluid inlet temperature and 
boiling temperature

Duke University
Mechanical Engineering and Material Science Department

J.C. Ordóñez
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Notice 
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the optimal 
‘match’
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Effect of the heat transfer area size on the “match” between the 
temperature distributions of the two streams
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Concluding remarks :

Optimal matching among the hot and collecting stream

(counterflow configuration, optimal mass flow rate ratio, 
optimal allocation of heat exchanger inventory) 

Collecting 
stream is 
single 
phase

Collecting 
stream 
experience 
phase 
change

Collecting 
stream 
experience 
phase change 
and boiling 
section is in 
contact with 
hottest gases

IJHMT Bejan and 
Errera, 1998

IJHMT Vargas, 
Ordonez and Bejan, 
1999

ASME HT Charlotte 
Ordonez and Chen, 
2004
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Refrigeration system driven by a hot stream through a counterflow heat 
exchanger

3. Optimal Matching for Refrigeration:



J.C. Ordóñez

( ) ( ) 0QQTTcm 0L12rp =−+− 

( ) 0
T
Q

T
Q

T
Tlncm

C0

0

LC

L

1

2
rp =−+




)TT()UA(Q 0C000 −=

)TT()UA(Q LCLLL −=

( )[ ]
( )[ ]r1Nexpr1

r1Nexp1

H

H

−−−
−−−

=ε

p

HH
H cm

AUN


=

r <1

( )[ ]
( )[ ]1

H
1

1
H

r1Nexpr1
r1Nexp1

−−

−

−−−
−−−

=ε

r >1

( )1H12 TTrTT −ε=−

( )
rp

p

cm
cm

r



=

( )1H12 TTTT −ε=−
L0H AAAA ++=

Thermodynamics Heat Transfer:

Constraint:
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Dimensionless groups:
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THE EFFECT OF THE HOT-STREAM INLET TEMPERATURE ON THE OPTIMAL ALLOCATION 
OF HEAT EXCHANGER INVENTORY   
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Maximized refrigeration rate and optimal capacity rate ratio of the 
countreflow system

Here the heat 
exchanger area 
allocation has 
been optimized
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Effects of refrigeration temperature 
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Effects of the matching stream inlet temperature
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EFFECT OF HOT SIDE OVERALL HEAT TRANSFER COEFFICIENT ON THE  REFRIGERATION 
RATE AND THE EXISTENCE OF AN OPTIMAL CAPACITY RATE RATIO.
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Placing the boiling section in contact with the hottest gases will prevent 
pipe overheating (materials constraints).   

An alternative configuration:

2. Phase change under limiting collecting temperatures
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Temperature distribution along the three sections of the heat exchanger

TH m cp
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.

Tout
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OPTIMIZED SYSTEMMODEL
CONSTRAINED
OPTIMIZATION

Entropy generation analysis
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( ) 0ssm
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QQ
S H0

0

e0
gen ≥−+
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gen0H,x STemW  −=

( ) ( )000H0HH,x sThsThe −−−=

Now for the heat exchanger, 
and external cooling alone:
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We can maximize the power output using: 

or directly using 

( )1,x2,x eemW −= 

In dimensionless form:

gen0H,x STemW  −=
minimize

( )
H,x

1,x2,xw

H,x
II em

eem
em
W







 −
==η

OPTIMIZED SYSTEMMODEL
CONSTRAINED
OPTIMIZATION



J.C. Ordóñez
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τ

Η
=4

τ
b
=1.98

τ
1
=1.8

ideal-gas model for steam

tabulated steam properties

m
mw




=

Maximization of the second law efficiency by selecting the 
mass flow rate of the water stream

Optimal 
matching
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Concluding remarks:

0

1

2

3

4

5

0 1A

τ 

A
b A

w
A

S

N = 10
τ

 H
 = 4

τ
b
 =1.98

τ
1
 =1.8

M
opt

 = 0.405

τ
Η

τ
3

τ
4 τ

out

τ
1

τ
2

τ
b

gas

water

boiling
section liquid water sectionsteam

section

τ
b τ

b

0

0.5

1

6 9 12 15

η
II,max

M
 opt

x
opt

y
opt

τ
H
 = 4 , τ

b
 = 1.98 , τ

1
 = 1.8

N

Optimal ratio is 
robust with respect 
to total surface area
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Optimal area 
allocation  is robust 
with respect to 
refrigeration 
temperature
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