

Florida Energy Systems Consortium

Stakeholders Meeting August 20, 2014

Hosted by FPL

FESC Marine Renewable Energy Activities

- Ocean Current Energy (FAU)
- Ocean Wave Energy (UCF)
- Ocean Thermal Energy (FAU)
- Offshore Wind (FSU, UCF, UF, FIU)

Marine Energy Industry **OTEC** Tidal **Ocean Current** Wave **TRL TRL** TRL TRL TRL **TRL** TRL TRL Demonstration Validation Verification Concept On and Tools & Full Scale Offshore Modeling Offshore Scale Testing and **Testing** Commercial Site Dev **/ERDANT POWER** Minesto Tidal Energy Solutions **CROWD ENERGY** SAFREMAENERGYLLO

Wave Energy Converter

Objective: to develop a new design of wave energy converter consisting of a buoy floating on the ocean's surface connected to the ocean floor via a chain. The heaving motion of ocean waves lifts the buoy, causing the chain to run over a sprocket to rotate a shaft; the shaft rotates within a permanent magnet generator, which in turn produces power.

First-Generation Prototype

- Consists of a single ratcheting sprocket and a small flywheel mounted on the shaft.
- First design produced a low power output due to low rpm of the shaft and high frictional losses from generator

PI: Dr. Zhihua Qu Faculty: Dr. Kurt Lin Graduate Students: Mr. Shiyuan Jin and Mr. Steven Helkin, Mr. Carlos Velez

Second-Generation Prototype

- •Utilizes two sprockets to rotate the shaft faster and to also drive the shaft on the downward stroke.
- •A larger flywheel and a more efficient generator reduced frictional losses imposed on the shaft.

Power from OCEAN CURRENTS

163 TWh/y

could supply 4% of annual U.S. energy demand or

of power consumed in coastal Southeast U.S. during 2012

Which could power

15 Million **American Homes**

Or more than all of the households in Florida, South Carolina, and North Carolina Represents a

market opportunity annually

Small-scale Offshore Testing

Surface-deployed without power transmission to shore

Capable of testing

1/10 – 1/4 scale systems up to

100kW or **7m** diameter demonstration turbines

Resource Characterization:

Turbulence and Shear Measurements

- Preliminary testing to quantify measurable frequency range
- SNMREC Lab Tests (1-60s)
- NNMREC Data (1-50s)

SNMREC Shallow Water Test

ADCPs: Shear

ADV: Turbulence

Regulatory Framework Survey **Project** Final EA **Application** Plan Plan Survey Install NOI **Draft EA** Lease MTB **DOE EA Adoption** State CD **Spring** April July **August** June 2007 2015 2010 2012 2013 2014

FIRST National Lease on the OCS:

Establishing the framework for future applicants

Full-scale Prototype Testing

Surface waves (deployment and storms)

