

The Grid of the Future

Speaker: Ana Radovanovic Google Energy Team

Today's 20th Century Grid

ONE WAY POWER FLOW

- Centralized generation
- Long distance transmission via mesh network
- Millions of homes on branched distribution network

Power distribution planning - *NOT in real time*:

- Day ahead planning only robust to small fluctuations in demand/supply
- Integrating intermittent renewables (> 20%)
 very difficult due to:
 - Current dispatch process
 - Tight frequency tolerance 60 +/- 0.036 Hz

Challenges with Today's Grid

2003 Northeast Blackout

Lessons learnt?

Not much!

2011 San Diego Blackout

Outage statistics - \$20-30 billion lost annually from outages

Source: "Tracking the Reliability of the US Electric Power System," J. Eto, K. Hamachi La Commare, LBNL Report 1092E (2008)

Novel Trends in Technology and Economics

PV SOON TO BE THE CHEAPEST ELECTRICITY SOURCE

BATTERY STORAGE GETTING CHEAPER

DISTRIBUTED COMPUTING WIDELY AVAILABLE

ELECTRONIC POWER CONVERSION: CHEAP AND UBIQUITOUS

Perfect Storm

- Affordable electricity
- Local/distributed generation
- Modern power electronics
- Access to communication/distributed computing for real-time price adjustments
- Increasing demand (both flexible and non-controllable)

Grid of the Future

Plug-and-play for distributed generation, storage and load

Automate <u>real-time</u> operation via networked distributed computing

- Real-time dispatch of generation & load curtailment for dynamic balance
- Fault tolerance and resilience via real-time control and optimization
- Dynamic stability
- Voltage & frequency regulation
- Economically optimized
- Enables trading between buyers and sellers
- Security

Flexible architecture, bidirectional flow, and scalable

Large penetration of intermittent resources

New "Intelligent" Interface to the Grid

Necessary capabilities provided in today's grid

- Synchronizing generation
- Frequency regulation (60+/-0.036Hz)
- Voltage and current regulation
- Reactive power control

New features

- Ultrasafe
- Lack of inertia
- Real-time generation-load balance
- Smooth plugging and unplugging
- Robust to large fluctuations
- Morphing topology

Time Scales for Control, Communication and Computation

Large-Scale Distributed Optimization Algorithm

Messaging is local within each bus!

- subject to operational constraints (private data!)
- keep close to the target schedule sent by the master

Faster Controls

Handle perturbations by performing optimized voltage/current control

The H bridge "emulates" desired inverter behavior, and uses its internal grid model objectives for inductor current and capacitor voltage.

240VDC H-Bridge driving a 10 Ohm load - varied initial conditions

First, Enable a Single Home to Operate Efficiently

Distributed load, generation and storage control:

- Simple/plug-and-play
- Knowledge-based
- Real-time
- Cost-efficient exploiting:
 - Loads' deferrability (EV, pool pump, WH, A/C,...)
 - Price diversity(PV, utility, generator)
 - Storage cost/efficiency (battery)

Example: Optimized Demand Shaping

Example: shaping due to flexible loads

Operate at Scale - Control Aggregated Flexible Loads

Platform At Scale

Monetizing Loads' Flexibility at a Large Scale

Deliver more reliable, affordable, and clean electricity to everyone in the world using innovative technologies and business models