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Outline

- Renewable power & limitations
- Options for managing renewable volatility
- ES and technical challenges

- Review of two stage and multi stage

stochastic optimization

- Choices of stochastic SCUC definition and

iImplications
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Power and productivity for a better world
ABB’s vision

As one of the world’s
leading engineering
companies, we help our
customers to use
electrical power
efficiently, to increase
industrial productivity
and to lower
environmental impact in
a sustainable way.
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Growth of Renewable Power

GLOBAL CUMULATIVE INSTALLED WIND CAPACITY 1996-2013
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Almost ten fold growth
in last decade

Figure 3.1 = Investmentin power plants by type and region, 2000-2012

U.S. Solar Installation Forecast
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Renewable no longer a marginal player

- On November 4th 2013, Denmark's wind turbines reached
122% of the countries demand for electricity

- October 39, 2013, Germany's renewable energy peaked
at 59.1% with a combination of solar and wind, with solar
contributing 11% at 20.5 gigawatts at its peak

- A drop in demand for conventional power plants led the
electricity price index at 2:00pm to 2.75 cents per kilowatt
hour.



Operation characteristics of renewables

= Not on demand resource

- Intermittence (variability)

- Uncertainty (high prediction error)

2 Wind Generation in April 2005
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Aggregation Effect on Variabllity

- Aggregation reduces variability, if correlation is low

= Aggregation not possible if network constraints are to be considered

(location matters)

= Shorter lead time in forecast lower forecast error

\/

\/

\/

\/

Cone of uncertainty

|

+

l

1
([—
|
=

]
Hour 0 Houri18 Hour24 : {_OD.,
I
)-: 2
i [41)
—
I @
| 3
I =

|

I

|

v

Table 4-4. Wind generation variability as a function of the
number of generators and time interval
14 Turbines 61 Turbines 138 Turbines | 250+Turbines
(%) (%) (%) (%)

1-Second Interval

Average 04 | 02 | 01 | 01

std. Der 03 | 02 | o1 73
1-Minute Interval

Average 12 | 0.8 ! 0.5 | 03

std. Dev@ 13 | o8 | 06 T
10-Minute Interval |

Average 3.1 | 21 ! 22 | 15

Std. Der 35 | 37 | 27 :
1-Hour Interval

Average 70 | 47 | 64 | 53

Std. Deve—""| 10.7 | 7] | a7 | 79 ™
Note: This fable compares oufput at the start and-ere-efthe indicated fime period in terms of the percenfage ofteta—— |
generation from each turbine group. Std. Dev. is the abbreviation for standard deviation.

Source: 2008 DOE 20% Wind Energy by 2030
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Weakness of renewable power

- Power must be supplied when customers need it
- Power must be closely balanced for frequency and stability

- Power provided when not needed, if not stored, is of less
value

Non-dispatchable Load

generation

Temporal mismatch

Intermittence
and uncertainty

Load n-dispatchable

generation
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Flexibility needed for renewable volatility

- Energy storage

- Stochastic control and optimization

- Demand response

= Super grids (diversity)

- Controllable grids (FACTS, DC T —
transmission)

Gpase(t) + Geycre(t) + Gpeqr (£) = L(1) -Without renewable
Gpase(t) + Geycre(t) + Gpeqr (t) = L(t) — RE(t) -With renewable

Gbase (t) + chcle (t) + Gpeak (t) + DR(t) + ES(t) = L(t) _ RE(t)

-With renewable, demand
response, energy storage
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Energy Storage effect on renewable variability
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Figure 2. Demonstration of the effects of increasing T (energy storage capaciiy) on the amplitude of the wind power
fluctuation for a real wind power case

Source: Jukka V. Paatero, Effect of Energy Storage on Variations in Wind Power, 2005
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Energy storage mandate and incentives

= California (2013) - 1.3GW of grid storage by 2020

- New York — target 100 MW l|oad reduction
= $2100 per kilowatt for battery storage
« $2600 for thermal storage.

- Puerto Rico’s (2013) - all new renewable energy
projects must have 30% 10-minute frequency
regulation & 45% one-minute ramping control

- Germany (2013) - $35 million in energy storage
subsidies, up to 30% of the cost of the storage

- Japan offers US$100 million in subsidies to
homeowners and businesses for energy storage



Energy Storage Technology Challenges

« Cost
- Safety and reliability
- Regulation
 Industry acceptance o
Source: DOE Grid Energy Storage Report
- US has 1.26 GW storage capacity, 0.12%
of total production capacity (pumped hydro
not included)
Technology comparison for Grid-Level applications
Technology Moving Parta;' Room Temperature Flammable Toxic Materials In production Rare metals
flow!'” Yes 'Yes No Yes @ |No No
liquid metal No 'No Yes @ |No No No
Sodium-lon No ;No Yes @ |No No No
Lead-Acid"® No ?‘Yes No Yes @ Yes No
Sodium-sulfur batheriesiNo ;.No No Yes ¢ Yes No
Ni-Cd No |Yes No Yes @ |Yes Yes @
Lithium-ion lNo }Yes Yes @ |No Yes No A DD
I\III.

Table source: http://en.wikipedia.org/wiki/Grid_energy_storage#Load_leveling



Two stage stochastic optimization linear model

é N,

Min cTx + E[Q(x, (w))] | 1.

x i ;

s.t. Ax =b 22— P2

| X ﬂ—»y:* Psé

Q(x,¢(w)) = o
Min qly . ]

y a R |

S.t. Tx+Wy=nh ; Vi - Pr

Stage 1 Stage 2

= w - random variable

= 2nd stage decisions are also called
« {(w) - probability distribution FECOUTSes

- £ =(q,h,T,W) - the random vector - Each stage can have multiple

- x - first stage decision, made before time intervals

random vector outcome is known - The stages are demarcated by the

- v,k =1,...K - second stage decision, revelation of random variables’
made after random vector is known outcomes ABRRB



Two stage stochastic optimization linear modeling

= Tree form
K
Min cTx + 2 Dr i Vi
xXY1,., YK
k=1
S.t. Ax =D
Tkx + kak = hk,k = 1, ,K

_ - X1 =X Y1
= Scenario form ; - » >
! _ ! 2
Xy = X !
Min 2 P (cT X + qryi) X3 = X4 ! 3
x1,..XK:Y1,.. YK ; ¥ >
k=1 i ;
S.t. Ax, =bk=1,..,K R R
Tkxk + kak = hk' k = 1, ,K i
Xi = Xiy+1, 1 = 1, ,K —1 - Xk ‘E Vi )
= Non-anticipativity constraints in scenario | Stage 1 Stage 2

form are needed for implement ability
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Extending to multi-stages

-Q; = Min [ClTxl +E (Min [CZsz +E (Min [C?Txfﬂ +E (Min[ch])DD]
X1 X2 X3 4

»

x'(T4)

x1(T3) x2(T4)
IO SN
RO |
a 7Y
: x*(T2) | ; " ,

‘ x>(T3) x6(T4)
, ‘ é .
:, x*(T3) i 7 (T4) E
x8(T4) i

Stage 1 Stage 2 Stage 3 Stage 4
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Choice In objectives

- Risk neutral — optimize the expected value of outcomes, need p.d.f.
Min{[E(F(x, cu))}
X w

- Risk aversion - including variance term to expected value, need p.d.f. —
even harder

Mxi_n{E(F(x, f:u)) + ki,b(Vg?“(F(Jf, fd)))}

- Extreme risk aversion - optimize outcome in the worst case, p.d.f. not
needed (often called robust optimization)

Mgn{M{f}X(F(x, ))}

= Other possible formulations

- Rational choice depends on risk attitude and risk tolerance capacity PR
FRIpED



Constraints enforcement choices

» Deterministic constraints - All constraints must be met under
all scenarios — may be impossible to achieve with large
uncertainty range (feasibility for scenario once in 10 years or
100 years) glx,w) =0

- Expected constraints - Constraints are satisfied on average
(try this with your bank)

E(g(k‘, cu)) >0

Different choices in objective and constraints definition lead to
potentially very different decisions

The 'correct’ formulation depends on the risk attitude and risk
tolerance capacity




Solution Strategies

= Direct solution
- Solve the deterministic equivalent directly by LP solvers

= Suitable only when the number stages and number of outcome per
stage are small

- Decomposition (to reduce problem size and use parallel
computing)

- Bender’'s decomposition (L-shaped method Slyke and Wets 1969)
(OA of the cost to go function)

- Modified Lagrangian Relaxation (Progressive hedging, Rockafellar
and Wets, 1991)

- Sampling Average Approximation

© ABB Group
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Pros and cons of scenario decomposition

- Non-anticipativity and implement ability
- Challenge in handling integer

- Post processing required for admissibility
and implement ability

= pros - parallelization



Security constrained unit commitment

= Minimize operation cost

T N
min ] = Z Z{C" (g:(6), ) + w (DT + ;D))

{x,u,p
t=1 i

- Nodal power balance constraints

N
> (a0 - di(0)) = 0,vt

[
- Network constraints under normal and contingences

N
Fmm <) Algi(®) - di(©} < 7, Vi, Ve
J

« (Other constraints not shown)

-Effect of renewable on transmission constraints depends on location

A, 1D ED
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Wind power uncertainty modeling for SCUC

- Joint p.d.f characterize the stochastic processes of
renewables, reflecting both auto and cross correlations —
very hard to get from historical data

- The number of scenarios grows exponentially fast
= W — the number of wind farms = 10
= T - number of stages = 24

= N - number of possible state = 2 (very crude)

- Number of Scenarios (N)” *W (independence assumed) =(2)(?4*10) =
103*24

- Sampling necessary to keep tractability — congestion
scenarios may be different with financial consequences

A, 1D ED
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Two Stage or Multi Stage Model for SCUC?

-2- stage

«(x- commitment,y - dispatch)
-Decision(xq, x5, ..., X1)
«Observation (¢4,¢,, ..., ¢r—1, &7)
Decision(yy, Y2, e, V-1, YT)

= All uncertainties go away at the
beginning of second stage, leaving
a completely deterministic scenario
for the entire operation horizon

© ABB Group
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= Can more commitment decisions

be deferred?

-Multi stage
«(x- commitment,y - dispatch)

-Decision(x,)

-Observation(¢;), Decision(y;, x5)
-Observation(¢,), Decision(y,, x3)

-Observation(¢s), Decision(ys, x4)

-Observation(é,_4), Decision(yy_1, x7)

-Observation(é;), Decision(yr)

uro _HoGr Hoursa= Hour1s  Hour2s




Compatibility with market process

- DA market is financially binding and provides deterministic LMP for
market settlement, hours before the first hour of the operating day

Deterministic |:> Deterministic :> Deterministic
SCUC Schedule, LMP

Parameters

= Stochastic unit comment does not produce one deterministic
solution, but many solutions contingent upon uncertain outcomes

Stochastic :> Contingent

Stochastic |:>
Parameters SCUC Schedule, LMP

- For hour two, four conditionally optimal
commitment/disp exists before hour 1 starts,
and two before hour 2 starts

- Problem exists for 2-stage also




LMP calculation issues with stochastic SCUC

- Before entering the second stage, multiple conditional optimal solutions
exist, > multiple LMP values

- How to settle the market? What needs to be done to ensure physical
feasibility and revenue adequacy?

Scenario L M H Expected Value
Prob 0.333| 0.333/0.333

LMP ($/MWh) __sa0l $30] $5| $25.oo>
Single Cap Blogkat $27/MWh | 1000\ 1000 o \_ 66.67

Scenario L M H Total

Prob 0.333| 0.333]/0.333

Revenue $1,333/$1,0000 SO $2,333
Expected generation MWh 33.33| 33.33 0 67

Double weighted LMP \SiSOD
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Summary

© ABB Group
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- Multiple strategies to deal with integration of high

level of renewables

= Choice In stochastic unit commitment definition

have important market consequences

= Transmission constraint consideration limits

aggregation of renewable power in market
scheduling

= Scenarios explosion is big challenge, even in two

stage model, sampling approach may create
repeatablility and fairness issues

- Non technical challenges exist in addition to

computational ones



Power and productivity
for a better world™
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