Projects	Summary
•	1: Overarching
	Title: Power Generation Expansion Portfolio Planning to Satisfy Florida's Growing Electricity Demands
	PI: Tapas Das, Co-PI: Ralph Fehr - USF
	Description : The objectives of the proposed research include: 1) developing a comprehensive generation
	technology based portfolio optimization methodology, 2) developing carbon revenue redistribution
	strategies to achieve goals of emissions control policies (cap-and-trade), and 3) develop educational
	resources to enhance training of scientific workforce for the state of Florida. The research will directly
	address three major challenges: fulfillment of the growing power demand, meeting the emissions control
	targets, and supply of technology workforce. The potential economic impact of the proposed research on
	the State of Florida is expected to be very high, since an energy-secure environment is a basic necessity to
	support the current trend of explosive growth both in industry and human resources.
	Budget: \$71,906
	External Collaborator: Argonne National Lab
	Title: Joint Optimization of Urban Energy-Water Systems in Florida (Thrust 2: Efficiency)
	Title: Combined Cooling, Heat, Power, and Biofuel from Biomass and Solid Waste (Thrust 3: Biomass)
	Title: Design, Construction, and Operation of CSP Solar Thermal Power Plants in Florida (Thrust 4: Solar)
	Title: Development of High Throughput CIGS Manufacturing Process (Thrust 4: Solar)
	Title: Solar Photovoltaic Manufacturing Facility (Thrust 4: Solar)
	Title: <u>Research to Improve Photovoltaic Cell Efficiency (Thrust 4: Solar)</u>
	Title: An Integrated Sustainable Transportation System (Thrust 4: Solar)
	Title: <u>PV Energy Conversion and System Integration (Thrust 4: Solar)</u>
	Title: Integrated PV/Storage and PV/Storage/Lighting Systems (Thrust 4: Solar)
	Title: Reliable and Resilient Electrical Energy Transmission and Delivery Systems (Thrust 7: Storage &
	Delivery)
	Title: <u>Secure Energy Systems – Vision and Architecture for Analysis and Design (Thrust 7: Storage &</u>
	Delivery)
THRUST	2: Enhancing Energy Efficiency and Conservation
	Title: Innovative Proton Conducting Membranes for Fuel Cell Applications
	PI: Ongi Englander, Co-PIs: Anant Paravastu, Subramanian Ramakrishnian - FSU
	Description: This project was initiated in January 2009 as an interdisciplinary effort among Englander
	(Mechanical Engineering), Paravastu (Chemical and Biomedical Engineering) and Ramakrishnan
	(Chemical and Biomedical Engineering). The work was divided into two main tasks: (1) the fabrication
	and characterization of silica and latex-supported membranes, and (2) the incorporation of protein
	nanomaterials inside the silica membranes. Three female students have participated and contributed to the
	project (see below). Two of the students (Holley and Kissoon) have received/will receive MS degrees in
	Materials Science. Two of the students (Kissoon and Witherspoon) belong to underrepresented groups.
	Budget: \$30,000
	This project has been completed
	Title: Sustainably Integrated Advanced Building Subsystems (OGZEB) PI: A "Yulu" Krothanalli Co PI: Justin Kromor ESU
	PI: A. "Yulu" Krothapalli, Co-PI: Justin Kramer - FSU

APPENDIX A – DESCRIPTION OF RESEARCH PROJECTS

Description: This project focused on the development of building subsystems that minimize the use of
natural resources and carbon-based energy in Florida while also using materials that are renewable an
sustainable. A key component of this project was the Off-Grid Zero Emissions Building, which allowed for
the testing of these subsystems. This team forms the engineering team participating in the Team Florida'
Solar Decathlon Competition. Lessons learned from the Off-Grid Zero Emission Building are incorporate
into Team Florida's design. This project is complete.
Budget: \$503,168
This project has been completed
Title: Insight into Membrane Degradation Mechanisms Through Verification of Chemical and Mechanica
Degradation Test Capabilities
PI: Darlene Slattery, Co-PIs: Len Bonville, Marianne Rodgers - UCF/FSEC
Description: The objectives of the program were to gain insight into fuel cell membrane degradation
mechanisms including both chemical and mechanical degradations. In order to achieve this objective, the
Membrane Electrode Assembly Durability Test System, MEADS, was verified, after which chemica
degradation tests were conducted. By performing post mechanical testing and analyzing the data, the
impact of accelerated degradation tests on the cell performance decay, chemical decomposition an
mechanical weakening of the membranes were evaluated. This project is complete.
Budget: \$351,518
This project has been completed
Title: Energy Efficient Building Technologies and Zero Energy Homes
PI: R. Vieira, Co-PIs: P. Fairey, J. Sonne - UCF/FSEC
Description: The project consists of two elements: 1) the construction of two flexible research homes a
FSEC to conduct research on advanced building energy efficiency technologies under controlle
conditions; and 2) a staged, field retrofit study in a small number of unoccupied homes to measure an
document the effectiveness of a series of retrofit measures that can be deployed using current technology
The project will also conduct an annual meeting where other FESC participants, other university member
and utility, industry, the U.S. Department of Energy and other stake holders who will be briefed on plan
and progress. Inputs from meeting participants will be sought.
Budget: \$1,224,000
Title: Joint Optimization of Urban Energy-Water Systems in Florida
PI: James P. Heaney - UF
Description: Urban water infrastructure systems for providing water supply, collecting and treating
wastewater, collecting and managing stormwater, and reusing water supply, concerning and dealing wastewater and stormwater require major
energy inputs. End users of the water require even more energy to heat this water for showers and bath
clothes washing, cooking and other uses. Increasingly, cities will rely on alternative water supplies such a
desalination that require much more energy per gallon of water produced. Conservation is the ideal way t
save energy and water by managing the demand for these precious commodities. Major strides have bee
made in reducing indoor water use from about 75 gallons per person per day to as low as 40 gallons per
person per day. However, these gains are being offset by concurrent increases in outdoor water use for
irrigation that range from 30 to 300 gallons per person per day depending on irrigation practices and th
size of the landscape. From a water use perspective, perhaps the greatest challenge will be the expected
growing competition for water if certain energy options are implemented in order to reduce our curren
dependence on foreign oil. Several recent national studies warn of this impending energy-water crisis. This
project will build on our extensive experience in evaluating urban water conservation options to include the
implications for energy use and to develop integrated energy-water management systems that a

compatible.
Budget: \$72,000 Back to Thrust 1: Overarching
Title: Planning Grant: High Performance and Low Cost Fuel Cells for Future Vehicles
PI: Jim Zheng, Co-PIs: Richard Liang, Chuck Zhang, Ben Wang - FSU
Description: The objective of this project is to provide an innovative approach to revolution of curre
energy storage and conversion technology and greatly leverage FSU position in the strategic important are
for sustainable energy. The project was performed by Drs. Jim Zheng and Richard Liang at the Departme
of Electrical and Computer Engineering and Department of Industrial Engineering, respectively. First
demonstrate preliminary results in high performance of energy storage and conversion materials and
devices in order to seek outside funding consistent with the vision of IESES. The deliverables we
conference proceedings and journal papers and proposal submissions for additional funding. This project
complete.
Budget: \$15,000
Research Integration (collaboration): NCSU and NHMFL on advantage batteries; Industrial Engineerin
on fuel cells; Maxwell Technologies, Inc. and Ionova Technologies, Inc. on supercapacitors; CAPS on
microgrids; MARTECH on thermoelectric; Shanghai Institute of Technical Physics on photovoltaic; N.
Dai, F.Y. Huang, S.L. Wang, X.N. Li, J.P. Zheng (co-PI), and D. Wei, "An International Collaboration
Group on Solar Cell Technologies Development", Sponsor: Chinese Academy of Sciences, Budget:
\$877,193 (¥6,000,000 RMB), Project Dates: 4/09-4/14.
This project has been completed
Title: NIRT: C-MEMS/CNEMS for Miniature Biofuel Cells
PI: Marc Madou, Co-PIs : Chunlei Wang, Sylvia Daunert and Leonidas Bachas - FIUDescription: In recent years, the quest for alternative sources that can autonomously power bioMEM
devices, especially those geared for in vivo applications, such as monitoring and drug delivery, has been the
focus of research by scientists and engineers as new power sources will prove critical for the advanceme
of the field. Current batteries are still less than optimal and often present drawbacks related to safet
reliability and scalability. An ideal power source for implantable devices should take advantage of natur
compounds present in the body of an individual and use them as fuel to produce power in a continuous and
reproducible manner, as long as the patient's physiological functions remain steady. Biofuel cells, which
are capable of converting biochemical energy into electrical energy, have been deemed as a potenti
solution to the drawbacks presented by conventional batteries, but the power density and operation
lifetime requirements for implanted devices have not been met yet. To that end, we are integratin
genetically engineered catalytic proteins and carbon-based 3 dimensional (3D) MEMS/NEMS structures
create new biofuel cells. The biofuel cell electrode surfaces, especially fractal electrode array, present
significantly increased surface area as compared to traditional architecture, increasing the biocataly
loading capacity considerably for high power throughput. The genetically engineered enzymes inherent
increase enzyme stability, consequently increasing biofeul cell lifetime. The scaled fractal electrode surface
plays a role in wiring the enzymes to the biofuel cell anode, which increases the electron transfer efficience
from the enzyme to the electrode for an increase in the overall performance of the biofuel cell
Furthermore, C-MEMS/C-NEMS architectures will enable the reproducible fabrication of low cost carbo
based electrode structures.
Budget: \$171,432 (PI portion) (total amount: \$1,000,000) - <i>Not Funded by FESC</i> .
Title: Fabrication of Nano Fractal Electrodes for On-Chip Supercapacitors
PI: Chunlei Wang - FIU
Description: Nature has always strived for the highest efficiency in all organisms. Just as nature h

benefited from fractal structures in almost all of its organisms, biomimetic fractal designs in electrochemical devices such as power conversion & storage devices and sensors can also lead to benefits in scaling. Our proposed concept is geared to take advantage of the scaling relationship between interface area and overall volume. Fractal electrode design is believed as a promising solution to optimize surface area while minimizing the internal resistance. We will fabricate and characterize carbon-based microelectrodes pyrolyzed from photolithographically patterned photoresist, which exhibits nano fractal geometry by design. In contrast with the current research trend of, first fabricating carbon nanostructures (CNTs, CNFs, etc), and then lithographically defining an electrode at the convenient location on the substrate, our novel methods will integrate the fabrication of the micro and the nano- structures using simple process thus bridging the gap that separates these two scales. Since the fabrication methods are all based on IC manufacturing methods, it will be easy to integrate into microchips.

Budget: \$150,000 - Not Funded by FESC.

Title: Energy Efficient Technologies and The Zero Energy Home Learning Center

PI: Stanley Russell, Co-PIs: Yogi Goswami Graduate Assistant: Mario Rodriguez - USF

Description: The project is to create and evaluate an affordable residential scale Zero Energy building that will function as an exhibition of energy efficiency and Zero Energy Home [ZEH] technology on or near the University of South Florida campus. The project will feature the most cost-effective combination of renewable solar energy with high levels of building energy efficiency. The building will incorporate a carefully chosen package of the latest energy-efficiency technologies and renewable energy systems to achieve the most successful and reliable results.

The building will utilize Photovoltaic solar electricity and solar domestic hot water heating systems using the grid as an energy storage system, producing more energy than needed during the day and relying on the grid at night. Plug-in hybrid automobile technology offers a promising means of providing distributed energy storage for such homes but has not been sufficiently tested. Using a systems approach to couple zero energy home technology with PHEVs we will explore opportunities to develop marketable products that meet Florida's energy and environmental goals.

Budget: \$344,600

External Collaborators: FSU College of Engineering- Justin Kramer, Brenton Greska; UF- Department of Interior Design- Maruja Torres, Nam-Kyu Park; UF Rinker School of Building Construction- Robert Ries; UCF Florida Solar Energy Center- Stephanie Thomas Ries; Beck Construction; Hees and Associates Structural Engineers.

Title: Unifying Home Asset & Operations Ratings: Adaptive Management via Open Data & Participation **PI**: Mark Hostetler, **Co-PI:** Hal S. Knowles, III - UF

Description: Recent environmental, social, and economic challenges are fostering a wave of interest in maximizing energy efficiency and conservation (EE+C) in existing U.S. homes. Long standing programs, ratings, and metrics are being reapplied into new stimulus initiatives such as the *Recovery through Retrofit*³ program. Simultaneously, electric and gas utilities are expanding their demand side management (DSM) programs from weatherization and conventional technology replacement incentives to include conservation behavior campaigns with "recommendation algorithms" designed to assist in homeowner energy retrofit decision making. Furthermore, loan programs are emerging to address the financial barriers that commonly limit initiation of the necessary retrofits.

Collectively, these approaches most often project future home energy performance based on engineering

	models of the physical characteristics of homes (i.e., "asset ratings"). Yet to date, the marketplace is inadequately integrating historical household energy consumption patterns (i.e., "operational ratings") into the decision tree to optimize retrofit program efficacy and consumer benefits. Moving toward the unification of asset and operational ratings is crucial for successful program management, proper monitoring/measurement/verification (MMV), loan risk assessment, and for the persistence of reduced home energy use over time. However, unification will not be easy. This research project combines qualitative and quantitative research methods in social science and building science using Florida case studies to evaluate the opportunities and constraints of asset and operational rating unification and the steps necessary to get there. Relationships between our project and the collaborative, transparent, and participatory nature of "open government" initiatives are also being explored. Budget: \$24,000
	External Collaborators: Nick Taylor (Ph.D. Student, UF School of Natural Resources & Environment),
	Jennison Kipp (Assistant In, UF Program for Resource Efficient Communities)
	Title: Meteorological Factors Affecting Solar Energy Efficiency
	PI: Paul Ruscher Co-PIs: (formerly Yaw Owusu, Hans Chapman - FSU
	Description: There are numerous meteorological factors that limit the efficiency of solar energy systems in the tropics. Depletion of available solar energy at the surface by increased water vapor, cloudiness, temperature of the solar panel system, pollution, are sometimes overlooked, because engineering specifications for design are often based upon midlatitude continental air masses. The typical tropical atmospheric reduction factors were reviewed using a state of- the-art solar energy model for this project. In addition, meteorological variability can be quite extreme in the tropics and many engineering studies on feasibility of renewable energy sources in general are often based upon "typical" year criteria, rather than longer term climatologies. It is suggested that climatological data be utilized to more accurately portray the variability of output to be expected at a typical installation. Many of these variables are already widely available from a combination of surface and upper air meteorological stations, as well as remote sensing data from satellites. We demonstrated the sources for these data as well as strategies for teaching about solar energy efficiency using routine observations from school-based weather stations. This project is complete. Budget: \$15,000
	This project has been completed
THRUS	F 3: Developing Florida's Biomass Resources
Algae	
	Title: Establishment of the Center for Marine Bioenergy Research: Systems Approach to BioEnergyResearch (SABER)PI: J. Kostka (he has left FSU), Co-PIs: William Cooper, Ivonne Audirac, Amy Chan-Hilton,Ellen
	Granger – FSU Decorietions, IESES', Systems, Annualsh to Die Engenny, Decorrech (SADED) is nortionlarly forward on
	Description: IESES' Systems Approach to Bio-Energy Research (SABER) is particularly focused on coupling algal cultivation to wastewater nutrient remediation. SABER has partnered with the City of
	Tallahassee's T. P. Smith Waste Water Treatment Plant in order to study the growth of local fresh water
	algae in waste water for use as biofuel. The two main objectives of this project are to: 1) perform both
	laboratory and field experiments to test for species-specific growth potentials, as well as for the effects of
	different environmental parameters, including light, carbon dioxide, and nutrient availability on microalgal
	growth rates and lipid production, and 2) determine the extent to which microbes (i.e. bacteria), which are
	exceptionally abundant in waste water, act as either competitors (for nutrients, carbon) or symbiotically
	with algae. To do this we are examining the bacterial community present in the waste water and detecting
	66

	community shifts that occur during algae cultivation. We are also examining the nutrient uptake dynamics
	between bacteria and algae by monitoring the usage and production of nitrogen, phosphorous, and carbon-
	containing compounds. Finally, a number of advanced analytical chemistry techniques are being used to
	characterize wastewater before and after algae cultivation. With a better understanding of the microbial and
	biogeochemical processes occurring in waste water during algae cultivation, engineering approaches may
	be proposed in order to further optimize algal growth in waste water.
	Budget: \$494,135
	External Collaborators: City of Tallahassee
	This project has been completed
	Title: Constructual Optimization of Solar Photo-Bioreactors for Algae Growth
	PI: Juan Ordonez - FSU
	Description : This was a planning grant (15K, only). The work was targeted towards placing us in a more
	competitive position in future submissions in the area of bio-fuels. By the end of this one-year effort we
	now have a complete design of a small-scale photo-bioreactor for algae growth, obtained additional funds
	that will allow us to build a large-scale photo-bioreactor and conduct the necessary research for its optimal
	design and operation. This project is complete.
	Budget: \$15,000
	External Collaborators: Federal University of Parana, Brazil
	This project has been completed
	Title: Optimization of Algae Species for Biofuels Production Using Genetic Altration
	PI: Ed Phlips- UF
	Description: This study will begin in June, 2011, and will focus on genetically altering selected species of
	algae to optimize their performance in biomass production systems aimed at biofuels. Two approaches to
	genetic alteration will be explored: mutagenesis and transformation.
	Budget: \$15,000
High	a Energy Crops
	Title: Energy Intensive Crop Development
	PI: Gary Peter, Matias Kirst, Don Rockwood - UF
	Description: To build a commercially viable, industrial scale system to produce transportation fuels and
	electricity from biomass requires both efficient conversion technologies and environmentally sustainable,
	cost effective supplies of biomass. In the US, Florida ranks first in its annual growth of plant biomass,
	because of its large cultivable land area and its subtropical climate, even though substantial land areas that
	can be planted are not currently in agricultural or forest production. The development of high yielding
	production systems for dedicated energy crops is considered essential for a sustainable, biomass to energy
	industry to be established, because the long-term availability of sufficient amounts of reasonably priced
	biomass is one of the most important factors in the site selection for new biofuel and bioenergy facilities.
	Dedicated energy crops are ones that 1) have high yields with minimum energy inputs in terms of
	agronomic practices, water and nutrient applications, 2) can be harvested, transported and processed
	efficiently into fuel or power, and 3) can be grown sustainably for generations without adverse
	environmental affects, or significantly impacting the food supply. We will evaluate likely energy crop
	species, <i>Eucalyptus</i> and southern pine to provide important yield and best management practices for
	growing these species for bioenergy conversion. We will also provide important chemical composition
	information that will impact the conversion efficiency of this biomass to ethanol, and identify and
	characterize important genes that regulate wood chemical composition
	Budget: \$432,000
	67

	Title: Water-Use Efficiency and Feedstock Composition of Candidate Bioenergy Grasses in Florida
	PI: Lynn E. Sollenberger, Co-PI's: John Erickson, Joao Vendramini, Robert Gilbert - UF
	Description: Florida ranks first in the USA in annual growth of plant biomass because of a large
	cultivatable land area, high rainfall, and long growing season. In order to capitalize on these advantages, the
	agricultural production sector and biomass conversion industries require information regarding which crop
	are adapted to particular Florida regions and local environments, how much biomass can be produced
	during what times of the year, which crops produce the most biomass per unit of water used, and which
	crops have the desired yield and composition for particular bioenergy applications. Research conducted to
	date has quantified the seasonal biomass supply provided by the most likely crops for use in Florida
	identified crops and management practices that result in most efficient water use, and described the
	chemical composition of these plants to allow estimates of potential energy production per unit of biomass
	Florida growers and industry representatives have gained access to this information through on-lin
	resources, presentations by several of the project investigators at the Florida Farm to Fuel Conference, and
	by attending the Bioenergy Crop Field Day at the University of Florida Plant Science Research and
	Education Unit. Seven graduate students are being trained through this project and undergraduate student
	are gaining invaluable research experience via internships mentored by project investigators. Facult
	involved in the FESC project have formed collaborations regarding agronomic and breeding projects wit
	Speedling, Inc., SERF, and BP. Both SERF and BP plan to construct ethanol facilities in Florida that would
	create an estimated 400 temporary construction jobs and 140 permanent jobs each.
	Budget: \$191,981
	External Collaborators: : Speedling, Inc., Nutri-Turf, Inc., British Petroleum (BP), and Southeast
	Renewable Fuels (SERF)
ch	emical Conversion
	Title: Development of Biofuel Production Processes From Synthetic and Biomass Wastes
	PI: Pratap Pullammanappallil - UF
	Description: With the ever-increasing price of petroleum and its finite supply, it is of high priority t
	develop domestic sources of transportation fuel, as well as other chemicals. Ethanol is an attractive
	alternate fuel that is being produced from corn starch. It is necessary to target other feedstocks for biofu
	production and develop processes that have a minimal environmental impact. There is considerab
	ongoing research on developing processes and catalysts for conversion of biomass to biofuels like ethano
	(called cellulosic ethanol process). But this project addresses other feedstocks with the following
	objectives: 1) development of biocatalysts for the conversion of waste biodegradable poly lactic acid base
	plastics to ethanol and 2) development of processes that processes for the production of additional fuels like
	biogas, bio-oil and biochar from the waste and byproducts of a cellulosic ethanol plant for the cleanup and
	reuse of these waste streams
	Budget: \$192,000
	External Collaborators: University of Central Florida
	Title: Engineering Biocatalysts for Hemicelluloses Hydrolysis and Fermentation
	PI: James F. Preston - UF
	Description: Our goal is to develop biocatalysts for the cost-effective production of fuel alcohols ar
	chemical feedstocks from underutilized sources of renewable biomass and evolving energy crops. To read
	this goal protocols for efficient saccharification of hemicellulose fractions from these resources will be
	developed.
	Objectives are to:
	1. Develop improved enzyme-mediated saccharification protocols of hemicelluloses with existin

bacterial biocatalysts for production of biofuels and chemical feedstocks.	
2. Develop Gram positive biocatalysts for direct conversion of hemicelluloses to biobased produc	cts.
3. Develop systems with bacterial biocatalysts for efficient bioconversion of the hemicellulose	fractions
of perennial energy crops (poplar, eucalyptus, switchgrass, energy cane) to targeted products.	
Budget: \$192,000	
External Collaborators: Collaborations are in various units within the University of Florida: L.O	. Ingram
and K.T. Shanmugam, Microbiology and Cell Science; F. Altpeter, Agronomy; G. Peter, Forest R	esources
and Conservation.	
Title: Thermophilic Biocatalysts for the Conversion of Cellulosic Substrates to Fuels and Chemical	s
PI: K.T. Shanmugam - UF	
Description: Biomass is an attractive source of sugars for a state like Florida that produces very	y limited
amount of corn for fermentation to produce ethanol as transportation fuel or other products such	
acid that can be converted to bioplastics. Florida currently generates about 8.7 million tons of dry c	
biomass per year (US-DOE) that can be converted to about 0.7 billion gallons of ethanol. With	
energy crops and short rotation trees cultivated for energy production using the abundant sunst	-
water resources, the ethanol produced from biomass can be significantly increased to meet the der	
transportation fuel in the State of Florida. Before biomass-based fuels and chemicals become an e	
reality, several key steps in the depolymerization of biomass to constituent sugars need to be ad	
One is depolymerization of cellulose to glucose by fungal cellulases before fermentation to eth	
microbes. The current estimated cost of fungal cellulases is \$0.32 per gallon ethanol produced and	-
is targeted for reduction to \$0.10 or less by year 2012 (DOE). We have demonstrated that by increa	
temperature of Simultaneous Saccharification and Fermentation (SSF) of cellulose from 30-35 °C	-
°C, the amount (and associated cost) of cellulases can be reduced by the required 3-fold with the	
commercial enzyme preparations. A microbial biocatalyst that produces ethanol or other chemica	
main fermentation product and can also function at this higher temperature and pH 5.0 in conjunct	
the fungal cellulases in the SSF process is a critical component of this process. We have ide	
thermophilic facultative anaerobe, <i>Bacillus coagulans</i> , with versatile metabolic capability as the n	
platform for the SSF of biomass to products and engineering this L(+)-lactic acid producing bact	
produce ethanol. The primary objective of this proposed study is to construct a B. coagulans derived	
produces ethanol as primary product of fermentation and to enhance the ethanol productivit	
engineered derivative.	5
Budget: \$192,000	
This project has been completed	
Bio gasification	
Title: Combined Cooling, Heat, Power, and Biofuel from Biomass and Solid Waste	
PI: William Lear, Co-PI: J.N. Chung - UF	
Description: The goal of this project is to provide the underlying research and demonstration of	a novel
technology which would enable the economic utilization of dispersed biomass and solid waste reso	
produce electric power, cooling, heat, and transportation fuels. This integrated gasification an	
generation system combines University of Florida advances in high-temperature gasification, h	-
generation and separation, and advanced gas turbine systems. Their integration is expected to	• •
significant improvements in the cost, emissions, feedstock flexibility, and water requirements,	
relatively compact, modular plant system. This in turn will enable much greater utilization of re	
energy supplies, helping the development of a sustainable energy supply infrastructure.	
Budget: \$576,000	
69	

	External Collaborators: Siemens Power Generation, Florida Turbine Technologies, Energy Concepts Co.
	Nu-Power Technologies LLC, PlanetGreenSolutions Inc., LPP Combustion, LLC.
	Back to Thrust 1: Overarching
Гh	ermo-Chemical Conversion
	Title: Production of Liquid Fuels Biomass via Thermo-Chemical Conversion Processes
	PI: Babu Joseph, Co-PIs: Yogi Goswami, Venkat Bhethanabotla, John Wolan, Vinay Gupta - USF
	Description: The objective of this project is to develop technology for the economical thermo-chemical
	conversion of lingocellulosic biomass (non-food grade biomass such as agricultural waste, bagasse from
	sugar mills, citrus peels, switch grass, municipal green waste, etc.) to clean burning liquid fuels. Five of the
	major advantages of this process over a biochemical route to production of ethanol are: (i) it does not utilize
	food-grade feed stocks and therefore complements and does not compete with the agricultural foo
	production in the state, (ii) the fuel produced is similar to those derived from petroleum unlike ethan
	derived fuels which have at least a 25% lower energy content, (iii) the conversion is accomplished in usir
	fast chemical reactions unlike the slow biological reactions for fermenting alcohol, (iv) the process does not
	require large amounts of water and associated energy costs of separating the water from the fuel as
	bioethanol processes, (v) it can utilize a wide variety of biomass sources unlike the biochemical rou
	which cannot work with high lignin containing biomass.
	Budget: \$554,447
	External Collaborators: Prado & Associates
	Title: Feasibility, Sustainability and Economic Analysis of Solar Assisted Biomass Conversion
	PI: Babu Joseph, Co-PI: Q. Zhang - USF Description: The main deterrent for commercialization of biomass conversion processes is the cost
	conversion; particularly the need to sacrifice as much as 30% of the energy content in the biomass for the
	thermo chemical conversion step. We want to research and develop the concept to use solar thermal energy
	from concentrating units to provide energy for the biomass gasification step. We also propose to evalua
	the sustainability of such a process.
	Overall Objective: The overall objective is to conduct a theoretical analysis of solar assisted therm
	chemical conversion of biomass from the point of view of energy efficiency, economic feasibilit
	environmental impact, and long term sustainability of renewable energy production.
	Budget: \$45,238
	Title: Integrated Florida Bio-Energy Industry
	PI: Ali T-Raissi Co-PIs: N.Z. Muradov, D.L. Block - UCF/FSEC
	Description: The aim of this project continues to be production of liquid hydrocarbon fuels derived fro
	lignocellulosic and aquatic biomass employing a two-step thermocatalytic process. In the first step, pr
	treated biomass is gasified with oxygen (or air) and steam yielding synthesis gas (syngas) containing
	hydrogen and carbon monoxide. In the second step, syngas generated by the gasifier enters a Fisch
	Tropsch (FT) synthesis unit where it reacts to form a range of liquid hydrocarbon fuels – including diesel.
	Budget: \$648,000
	Title: Biofuels Through Thermochemical Processes: Approach to Produce Bio-Jet Fuel
	PI: Anjaneyulu Krothapalli - FSU
	Description: The objective of this project was to develop technologies to produce biojet and biodiesel fue
	from sustainable sources such as bio-oils and hydrogen produced from biomass generated synthetic ga
	Novel processing concepts, reactor design and catalyst systems are employed in this integrated approach
	convert any cellulosic biomass and any nonedible bio-oils into bio-jet fuel (Figure 1). Feedstock flexibili
	offers significant cost and logistic advantages to this approach. Unlike other processes which use only the

	oil derived from a plant, the entire plant can be used as feedstock source and the proposed approach ca
	also convert the more challenging lignocellulosic component. This project is complete.
	Budget: \$229,572
	This project has been completed
ГHI	RUST 4: Harnessing Florida's Solar Resources
S	olar Testing Facility
	Title: Solar Systems Testing Facility
	PI: James Roland, David Block - UCF/FSEC
	Description: Over the past four years, the Florida Solar Energy Center (FSEC) has received a signific increase in demand for solar and PV systems testing and certification. This occurrence has resulted requiring the Center to correspondingly amplify its capabilities to respond to the increased demand. Thus, objective of this task was to construct a solar and PV systems testing facility by adding walls, windows, do and A/C to an existing Florida Solar Energy Center roof only facility. The enclosing of this existing sp
	was done for the purpose of increasing laboratory space and to allow for laboratory testing of solar was heating systems and PV modules and inverters. The action was taken following a study which determined project was the most cost effective means of adding valuable indoor laboratory space. Budget: \$600,609
	This project has been completed
So	olar Thermal
	Title: Concentrating Solar Power Program
	PI: Charles Cromer, R. Reedy - UCF/FSEC
	Description: The objective of this effort is to produce a detailed Florida map of the solar direct beam an
	global resource available for use in Florida whereby a potential user of solar energy can enter their location
	latitude and longitude and receive a table of solar energy monthly averages for that specific site as derive from the past eleven years of data. The concept is to use NOAA satellite photos and utilize the brightness of
	the cloud cover as a clearness factor predictor of the solar energy that gets through to the ground below. Budget: \$52,000
	External Collaborators: FPL
	This project has been completed
	Title: Development of Novel Water Splitting Catalysts for the Production of Renewable HydrogenPI: Helena Hagelin-Weaver - UF
	Description: This project focuses on the development of iron-based catalysts for the thermochemical splitting of water into hydrogen and oxygen. The thermochemical process of splitting water is particularly well-suited for the utilization of solar energy to provide the heat for the reaction and is a way to produce a renewable hydrogen fuel. As hydrogen is difficult to transport and store, producing hydrogen on site for power plants using proton exchange membrane (PEM) fuel cells or internal combustion engines to generat electricity or for the production of chemicals, such as liquid hydrocarbon fuels, is a very attractive approach. The project uses a two-step process in which water is passed over a reduced iron oxide to generate hydrogen while the oxygen is taken up by the oxygen-deficient iron oxide (Step 1: FeOx-1 + H20 \Box FeOx + H2). In the second step the resulting iron oxide is heated to desorb oxygen and regenerate the oxygen-deficient iron oxide to close the catalytic cycle (Step 2: FeOx \Box FeOx-1 + $\frac{1}{2}$ O2). The main objectives of the project are to develop mixed metal oxide catalysts that 1) will release oxygen at
	 temperatures lower than 1500°C (Step 2), while still maintaining water-splitting activity (Step 1) and 2) are stable up to the temperature necessary for the oxygen desorption step. Budget: \$ 100,000
	Duugu. \$ 100,000

Title	e: Enhanced and Expanded Solar Thermal Test Capabilities
PI:	J. Del Mar, R. Reedy - UCF/FSEC (PI use to be J. Walters)
Des	cription: The Florida Solar Energy Center (FSEC) serves the State of Florida by providing
inde	pendent, third-party testing and certification of solar equipment for the main purposes of providing
proc	luct value in the marketplace, especially for products that are not widely "proven" with consumers such
-	blar water heating systems and solar electrical (photovoltaic) systems. Even more important, third-party
	fication provides protection to reputable manufacturers, ensuring that lower quality products, often
	n foreign markets, do not compete head-to-head with Florida and U.S. products unless they meet the
	e standards.
	get: \$809,295
	ernal Collaborators: Solar thermal manufacturers
	e: Solar Fuels for Thermochemical Cycles at Low Pressures
	Jörg Petrasch - UF
	cription: The project focuses on the production of solar fuels from solar thermochemical cycles
	loying metal/metal oxide redox pairs. These thermochemical cycles consist of a high temperature
-	othermic solar driven reduction step and a low temperature, slightly exothermic water or CO2 splitting
	The high temperature step typically proceeds at temperatures above 2000 K. Hence, it poses a range of
-	erial and design challenges. According to Le Chatelier's principle, the temperature for the solar
	pociation reaction decreases as the pressure inside the reactor is reduced. The central hypothesis of the
	ect is that operating the high temperature step of metal/metal oxide solar thermochemical cycles at
	ced pressures will lead to significantly relaxed temperature requirements, while the work necessary to
	luce the pressures will hold to significantly reduce the overall efficiency of the process.
-	main goal of the project is to demonstrate the feasibility of carrying out high temperature thermal
	ction of metal oxides in rarefied conditions using high intensity solar radiation from UF's solar
	lator.
	get: \$ 100,000
	ernal Collaborators: Wojciech Lipinski, University of Minnesota
	e: Solar Thermal Power for Bulk Power and Distributed Generation
	David Hahn, Co-PIs: James Klausner, Renwei Mei, Helena Weaver - UF
	cription: While there are many different approaches to hydrogen generation, the most attractive means
	e materials to produce intermediary reactions that result in the splitting of water to produce hydrogen at
	erate temperatures (<1000 K). It is envisioned that the metal oxide reactors will ultimately be mounted
	in a solar concentrating reactor, and irradiated via heliostats. This Task is structured toward the overall
-	s of solar-driven, thermochemical hydrogen production, with associated efforts toward the enabling
	ace science, catalysis, particle science, material synthesis, nano-structures, multiscale-multiphase
	sics modeling, and process simulation that will enable the realization of solar hydrogen-based fuels to
-	er the transportation economy. Successful efforts as targeted in this project are a critical step toward
	eased renewable-resource based fuels and energy, reduction of GHG emissions, and establishment of a
	power industry in Florida.
	get: \$446,400
	e: Design, Construction and Operation of CSP Solar Thermal Power Plants in Florida
	Yogi Goswami, Co-PIs: Lee Stefanakos, Muhammad Rahman, Sunol Aydin, Robert Reddy - USF
	ida utilities are mandated to achieve 20% renewable energy contribution to their generation mix by
2020). While technologically feasible with solar energy, the capital costs are high – presently, capital costs

r r	range from \$6,000-\$7,000/kW for PV and \$3,500-\$4,000/kW for concentrating solar thermal power. This
	project targets the development of solar thermal power technology for bulk power and distributed
-	generation, which will diversify energy resources in Florida and reduce greenhouse emissions by utilizing
0	renewable sources. Also, there will be economic impacts with the establishment of new power industry in
	Florida, which will help the electrical utilities of the state to meet the renewable portfolio standards. The
	project has three main tasks; the first one is to develop design methodologies and standards for the prover
-	solar thermal power technologies in combination with bio or fossil fuels based on Florida conditions and
C	resources. Secondly, the project aims to set up demonstration and test facilities for these technologies for optimization for Florida conditions, and the final task is to develop and commercialize innovative
	echnologies based on new thermodynamic cycles.
	Budget: \$882,000
	External Collaborators: Sopogy Inc. and Gulf Coast Green Energy.
	Back to Thrust 1: Overarching
	Title: Multi-Generation Capable Solar Thermal Technologies
	PI: A. Krothapalli, Co-PI: Brenton Greska - FSU
I	Description: The objective of the research was to develop and demonstrate small-scale solar therma
t	echnologies that can be used separately, in conjunction with one another, or with existing waste hea
F	producers, thus improving the overall system efficiency. This project is complete.
I	Budget: \$544,226
1	This project has been completed
	rinking Water
	Title: Low Cost Solar Driven Desalination
I	PI: James Klausner - UF
S	Student: Fadi Alnaimat/ Ph.D
I	Description: This work concerns the development of a cost effective, low power consumption, and low
	naintenance desalination process that is powered by solar energy. The solar diffusion driven desalinatio
((DDD) process is most suitable for decentralized applications. While theoretical models have bee
d	developed to analyze the evaporation and condensation processes of the solar DDD under transient
С	operating conditions (Alnaimat et al., 2011), experimental investigations have been conducted to validate
ť	he theoretical models. In this reporting period, the overall distillation performance of the solar DDD has
t	been investigated under different design and operating conditions. The best operating modes have bee
F	proposed to improve the water production and reduce the specific energy consumption.
I	Budget: \$252,000
τ	University: UF
7	Fitle: Clean Drinking Water using Advanced Solar Energy Technologies
I	PI: Lee Stefanakos Co-PI's: Yogi Goswami, Matthias Batzill, Maya Trotz, Sesha Srinivasan - USF
I	Description: Availability of fresh water is one of the biggest problems facing the world and Florida is or
C	of the most vulnerable to fresh water shortages. Moreover, Florida ground water is contaminated in man
	ocations from leaky underground tanks, agricultural pesticides, and other chemicals. Although it
	possible to desalinate abundant seawater, conventional systems are too energy intensive. Solar energy ca
-	provide the needed energy, and innovative new solar vacuum (USF) and humidification/dehumidificatio
-	(UF) desalination systems can provide adequate fresh water for the state's needs. Systems are being
	leveloped for both bulk water desalination and small community needs/disaster response. We will als
	levelop photocatalytic disinfection to remove contaminants and integrate these technologies with solar P
f	For complete water supply systems.

r	
	hotocatalysis is a promising water treatment technology capable of utilizing solar light. However, the
	onstruction of an effective photocatalytic disinfection system for water purification is currently limited by
	he lack of reliable models to aid in the design and testing of these systems. Simplified models have been
-	roposed, but most are inadequate because they rely on traditional disinfection theories which are not
aj	pplicable to photocatalysis. Therefore, the major goal of this research is to develop a model for
p	hotocatalytic disinfection based on fundamental processes which may then be used to design water
tr	reatment systems in the state of Florida.
B	Budget: \$326,756
E	External Collaborators: NA
Low Cost	t PV Manufacturing
Т	itle: Enhanced and Expanded PV Systems Testing Capabilities at FSEC
P	I: S. Barkaszi, Co-PI: R. Reedy - UCF/FSEC
D	Description: An important FSEC function is consumer protection from poorly designed and manufactured
Р	V modules and systems. FSEC's test capabilities were established over 10 years ago and were adequate at
	time to test PV modules for certification. However, PV costs have fallen and competing electric utility
	ates have risen. In the last two years, these curves have crossed under some economic scenarios and
	ncentive programs, and the demand for PV module testing and system certification has jumped. Thus, this
	ask will provide for enhanced and expanded PV testing and certification capabilities. The task will also be
	one in close coordination with FSEC's work with the U.S. Department of Energy's PV program.
	Sudget: \$196,018
	Title: Development of High Throughput CIGS Manufacturing Process
	'I: Neelkanth Dhere - UCF/FSEC
	Description: A reduction in the cost of CIGS and other thin film PV modules is required for broad PV
	pplications. The objective is to develop a high-rate deposition process for synthesis of CIGS absorbers and
	ther layers by employing in-line and batch deposition techniques. The goal is finally to attract a PV
	nanufacturing company to Florida by developing a high-rate manufacturing process for $CuIn_xGa_{1-x}Se_2$
	CIGS) solar cells.
	Sudget: \$141,620 Back to Thrust 1: Overarching
	Title: Florida Opportunities for PV Manufacturing and Applications
	Pls: D. Block, J Fenton, P. Fairey, W. Schoenfelds, R. Reedy - UCF/FSEC
	Description: The overall goal of this project is to assist in the development of a photovoltaic (PV)
	hanufacturing industry in Florida. The project objective is to conduct a review of the state, national and
	nternational PV manufacturing data for the purposes of establishing industry practices and an industry data
	ase. The data base will then be available to assist Florida in establishing PV manufacturing firm(s).
	Sudget: \$81,120
	Title: Development of Low Cost CIGS Thin Film Hot Carrier Solar Cells
	Pls: Gijs Bosman, Co-PI: Tim Anderson - UF
	Description: Our study is focused on hot carrier solar cells for cell conversion efficiency improvement in a
	ow cost, high throughput CIGS system. The rapid thermalization loss of hot photoexited carriers
	interacting with the lattice can potentially be reduced through phonon engineering in the absorber layer; the
	ubsequent extraction of the hot carriers may be realized through device engineering of energy selective
	ontacts.
	Budget: \$450,000
	Title: Solar Photovoltaic Manufacturing Facility to Enable a Significant Manufacturing Enterprise within
	the State and Provide Clean Renewable Energy
	74

 PI: Don Morel – USF, Co-PIs: Chris Ferekides, Lee Stefanakos - USF Description: The primary goal of this project is to enable the establishment and success of local solar photovoltaic manufacturing companies to produce clean energy products for use within the state and beyond and to generate jobs and the skilled workforce needed for them. Thin film technologies have shown record efficiencies of 20%, and present tremendous opportunities for new Florida start-up companies. USF, UCF, and UF are collaborating to develop a pilot line facility for thin film solar technologies, which will serve as a test bed for making ongoing improvements in productivity and performance of solar modules, develop advanced manufacturing protocols, and help train a skilled workforce to ensure the success of new companies. Budget: \$1.6M External Collaborators: Mustang Solar, a Division of Mustang Vacuum Systems
 ed PV Device Program
Title: Research to Improve Photovoltaic (PV) Cell Efficiency by Hybrid Combination of PV and Thermoelectric Cell Elements. PIs: Nicoleta Sorloaica-Hickman, Robert Reedy - UCF/FSEC Description: Photovoltaic/thermoelectric (PV/TE) cell integration is a promising technology to improved performance and increase the cell life of PV cells. The TE element can be used to cool and heat the PV element, which increases the PV efficiency for applications in real-world conditions. Conversely, the TE materials can be optimized to convert heat dissipated by the PV element into useful electric energy, particularly in locations where the PV cell experiences large temperature gradients, i.e. use the chermoelectric module for cooling, heating and energy generation depending on the ambient weather conditions. Thus, the goal of this research effort is to research and develop nanoscale design of efficient thermoelectric material through a fundamental understanding of the materials properties and to design and puild a photovoltaic thermoelectric (PV/TE) hybrid system. Budget: \$167,820
Back to Thrust 1: Overarching
Fitle : PV Devices Research and Development Laboratory PI: Robert Reedy Co-PI's: Nicoleta Sorloaica-Hickman, Neelkanth Dhere - UCF/FSEC Description: The primary challenge facing the PV industry is to dramatically reduce the cost/watt of delivered solar electricity by approximately a factor of 2 to 3, to increase the manufacturing volume by a factor of 10 and to improve the cell efficiencies by a factor of 2 to 3. This task will conduct R&D on basic science of PV cells and develop a world class PV cell laboratory for future cell research. The R&D will focus on developing new and improved PV cells such as organic PV, nano-architectures, multiple excitation generation, plasmonics, and tandem/multi-junction cells. Budget: \$450,250
Title: Beyond Photovoltaics: Nanoscale Rectenna for Conversion of Solar and Thermal Energy to Electricity PI: Shekhar Bhansali, Co-PIs: Elias Stefanakos, Yogi Goswami, Subramanian Krishnan - USF Description: The main objective of the proposal is to commercialize and scale up a new technology, rectenna to convert waste heat energy to electricity. Although the prediction of highly efficient (~85%) solar rectennas was published almost 30 years ago, serious technological challenges have prevented such devices from becoming a reality. Since the ultimate goal of a direct optical frequency rectenna photovoltaic power converter is still likely a decade away, we plan to convert optical solar radiation to thermal radiation (~30 THz regime) using an innovative blackbody source. Leveraging the research efforts of the world-class

	team members, we plan to further develop the rectenna technology that is within reach of efficient radiatio
	conversion at 30 THz. A fully integrated, blackbody converter and 30 THz rectenna system will be capable
	of converting at least 50% of solar and thermal energy into usable electrical power, clearly demonstrating
	truly transformational new technology in the renewable energy technology sector.
	Budget: \$598,500
	External Collaborators: Bhabha Atomic Research Center, India
PV I	ntegration
	Title: PV Energy Conversion and System Integration
	PI: I. Bataraseh, Co-PI's: J. Shen, Z. Qu, X. Wu, W. Mikhael, L. Chow – UCF (PI use to be N. Kutkut)
	Description: The objective of this project is to develop a system-driven Plug'N'Gen solar power syste
	demonstrating architecture of decentralized, low-cost, mass-produced, PV panel-mounted micro-inverter
	This system will be able to compete with today's centralized multi-kW PV inverters that require co
	prohibitive professional installation. The project tasks are: 1) novel inverter topology and control concept
	2) advanced digital control algorithms; 3) SmartTie interface with the utility grid; and 4) low cost and ultra
	compact PV inverter in package.
	Budget: \$1,267,000
	Back to Thrust 1: Overarching
	Title: Non-Contact Energy Delivery for PV System and Wireless Charging Applications
	PI: Jenshan Lin - UF
	Description: Innovative non-contact energy delivery method will be used in photovoltaic energy
	generation system to accelerate the system deployment. Instead of delivering electric power using cable
	penetrating through building structures, magnetic field coupling allows power to be transferred wireless
	through building walls and roofs. In the meantime, the DC electric energy from photovoltaic cells
	converted to AC energy. This enables the photovoltaic system to be quickly set up or relocated, and the
	collected solar energy from outdoor system can be conveniently delivered to indoor appliances. Technique
	to achieve high efficiency at high power delivery through different building structures will be studied for
	this plug-and-play architecture.
	In addition, the technique and the system can also be used for non-contact charging of electric vehicles. The
	transmitter/charger can be placed as a mat on garage floor or parking space. The receiver inside vehicle w
	pick up the energy delivery through magnetic coupling. This eliminates the need of connecting charging
	wires to vehicles and exposed metal contacts, which is a safer method of charging electric vehicles
	Budget: \$252,000
	Title: An Integrated Sustainable Transportation System
	PI: David Norton, Keith Duncan – UF (Formerly Eric Wachsman (PI) and Shirley Meng (Co-PI);left UF)
	Description: The proposed vehicle, operating on biofuel while in transit and charged by the sun whi
	parked, is the ultimate sustainable transportation system operating completely on renewable America
	energy resources. Moreover, the use of solid oxide fuel cells (SOFCs) rather than an IC engine in the
	hybrid vehicle results in a dramatic improvement in efficiency and reduction in emissions. SOFCs are the
	most efficient technology for converting energy from hydrocarbon fuels to electricity on a "well to wheels
	basis. In contrast, the more conventional fuel cells require hydrocarbon fuels to first be converted to H
	with resultant efficiency losses, followed by losses due to H_2 transport and storage. Therefore, on
	system-basis SOFCs hold the potential for producing the least CO ₂ /kWh from conventional fuels, and
	designed to operate on biofuel would in effect be carbon neutral and operating on a renewable resource.
	developed this vehicle would be a transformational change in transportation technology.
	Budget: \$594,000

	External Collaborators: Solid-State Energy Technology, Inc., Lynntech, Inc., Planar Energy Devices
	Inc., CFX Battery, Inc. Back to Thrust 1: Overarching
	This project has been completed
	Title: PV Power Generation Using Plug-in Hybrid Vehicles as Energy Storage
	PI: J. Shen, Co-PI: I. Batarseh - UCF
	Description: The objective of this project is to develop and demonstrate an alternative PV power generation architecture that uses plug-in hybrid vehicle as the energy storage and transfer element with total system cost target of \$3.50/W. The tasks include developing efficient, reliable, and inexpensive maximum power tracking DC/DC battery chargers and 3-phase converters. A 10kW demonstration solar carport charging station will be built on UCF campus. A plug-in hybrid vehicle with a 25kWh battery ban (battery-only driving range of 50-100 miles) and onboard bidirectional AC charging system will be
	demonstrated
	Budget: \$380,816
	External Collaborators: City of Tavares, FL
	Title: Integrated PV/Storage and PV/Storage/Lighting Systems
	PI: Franky So, Co-PI: Jiangeng Xue - UF
	 Description: The goal is to increase the efficiency and reduce the cost of solar power through the integration of PV, Li-battery, and LED lighting technologies. Since all components are in the form of this films, the PV/battery/LED system can be integrated as a single module. Since half of the materials cost of each device is the substrate, integrated module will also reduce materials costs and processing step Importantly, their integration further eliminates the need for inverters since they are all low-voltage devices. Such an integrated device can be used to store energy during the day and power the LED panel for lighting in the evening. In addition, we will explore the possibility of fabricating a semi-transparent module. The success of this Task will lead to a novel solar-power lighting panel that can be used as a sk light during the day and a lighting panel during the night without using grid-power. We not only wi develop the technologies, but also integrate devices and perform technology-economic evaluation including life-cycle costs. Budget: \$576,000 Back to Thrust 1: Overarching
HDUS	T 5: Ensuring Nuclear Energy & Carbon Constrained Technologies for Electric Power in Florida
IIKUS	Title: Reducing Residential Carbon Emission in Florida: Optional Scenarios Based on Energy
	Consumption, Transportation, and Land Use
	PI: Tingting Zhao, Co-PI: Mark Horner - FSU
	Description: In 2007 the Governor of Florida established targets for greenhouse gas (GHG) emission which mandate that the State of Florida aims to reduce emissions to 2000 levels by 2017 and to 1990 level by 2025. To fulfill these goals, not only is the development of renewable sources of energy and furneeded, but it is also necessary to achieve more sustainable energy and fuel consumption patterns. The project is dedicated to the latter objective, i.e., exploring the effectiveness of optional scenarios for households' consumption of energy and transportation fuels with respect to carbon dioxide mitigation. Human land use is another major concentration of this research, as changes in the built environment and vegetation cover may create sources or sinks of carbon dioxide and hence affect the intensity and origins of carbon emissions. The proposal of this project consisted of three major steps: 1) calculating the Florida baseline carbon.
	dioxide emissions from residential energy and fuel consumption as well as human land uses; 2) developin

scales, ranging from county to the region and larger. The overarching objective of this project is to address		
carbon in biomass and soils due to unique climatic and landscape conditions. However, research gaps exist to accurately assess carbon pools and fluxes at coarse		
forest ecosystems have much potential to sequester Information System		
Terrestrial Carbon		
atmosphere and effects on global climate change have been well documented, and future impacts are uncertain but potentially devastating. Florida's natural and agro-		
atmosphere and effects on global climate change have		
Description: Rising CO_2 concentrations in the		
PI: Sabine Grunwald. Co-PI: Tim Martin - UF		
Title: Database Infrastructure for Integrative Carbon Science Research		
Budget: \$200,000		
materials that can be used in building, packaging, and other manufactured products.)		
structure of lignin for both deep-well injection (by using lignin derivatives as drilling "muds") and fo		
would not be discarded immediately. We will use Nature's catalysts (enzymes) to tailor the chemica		
would lead to diminished atmospheric CO2 levels. This could be accomplished by chemically altering lignin's structure to facilitate long-term terrestrial sequestration or using it in value-added products that		
not add to global greenhouse gas levels, having options to remove lignin from the global carbon cycle		
lignin is currently burned to provide energy for factory operations. While burning plant derived lignin does		
complex structure makes it difficult to use this material in value-added products, and ahte vast majority o		
Description: After cellulose, lignin is the second most abundant forma of carbon in plants. Lignin's		
PI: Jon Stewart - UF		
Title: Biocatalytic Lignin Modification for Carbon Sequestration		
This project has been completed		
Budget: \$15,000		
is complete.		
coatings on HfO2 particles, where HfO2 serves as a benign surrogate for nuclear fuel oxides. This project		
compatibility of BeO and nuclear fuels (UO2, PuO2, ThO2 and MOX), and initial studies into BeO		
of the thermal conductivity of BeO and other high thermal conductivity oxides, the chemical and therma		
thermal conductivity on nuclear fuel and reactor performance, the temperature and irradiation dependence		
oxide coatings. This work will included a literature search of past investigations of the impact of enhanced		
performance by considering the potential for improved thermal behavior through high thermal conductivity		
meet Florida's sustainable energy demands, they pursued the option of enhanced oxide nuclear fue		
Description: The objective of this proposal was to perform preliminary investigations to determine the viability of improved oxide nuclear fuels through high thermal conductivity coatings such as "BeO." To		
PI: Justin Schwartz - FSU Deceription: The chiesting of this proposal was to perform proliminary investigations to determine the		
Title: Planning Grant: Enhanced Thermal Performance and Microstructure Simulation of Nuclear Fuels		
This project has been completed		
Budget: \$60,844		
data analysis is underway.		
the NSF Geography and Spatial Sciences (GSS) program. Data collection from the survey is complete and		
practice and responses to energy-saving incentives; and 3) preparation for the external grant application to		
survey (including sampling design), which is composed of over 30 questions dedicated to household energy		
publications on carbon inventory analysis at the state level; 2) finalizing the household energy consumption		
This project was planned to be completed within two years. The PIs concentrated mainly on 1		
This president was also and to be consulted in the constant T^{1} DI $(1, 1, 1)$		

	these obstacles by creating a terrestrial carbon information system (called "TerraC") for the carbon science
	community, focused on ecosystems in Florida. The information system will be administered through the
	UF Carbon Resources Science Center (<u>http://carboncenter.ifas.ufl.edu</u>), a multi-disciplinary Center dedicated to research in support of enhanced agricultural and natural resource carbon management.
	Budget: \$199,440
	Title: Creation of Carbon Sequestration Data, Technologies and Professional Cohorts for Florida
	PI: Mark Stewart, Co-PIs: Jeffrey Cunningham, Maya Trotz - USF
	Description: Rising concerns over increasing levels of greenhouse gases, especially carbon dioxide, have led to suggestions to capture carbon dioxide at fixed sources, such as fossil fuel power plants, and sequested the carbon for millennia by injecting it underground. Florida overlies many thousands of feet of carbonal rocks which may be suitable for geologic sequestration of carbon dioxide. This project will investigate the potential for geologic sequestration of carbon dioxide in Florida, the physical and chemical changes that may occur as a result of injection, assess the potential for escape of injected carbon dioxide, determine the risk, if any, to aquifer systems used for water supplies, develop methodologies for Florida utilities to predict the performance and risks of proposed sequestration projects, and educate a cohort of geologic sequestration industry in Florida.
	Budget: \$479,640
	External Collaborators: Tampa Electric Company (TECO); Florida Power and Light (FPL);
	Environmental Consulting and Technology (ECT), Inc.; Los Alamos National Laboratory.
THRUS [6: Exploiting Florida's Ocean Energy Resources
	Title: Southeast National Marine Renewable Energy Center
	PI: Susan H. Skemp, Co-PIs: Howard P. Hanson, James VanZwieten - FAU
	Description : The research and development program being conducted by the Southeast National Marin Renewable Energy Center (SNMREC) is structured to be the catalyst that will enable the ocean energy industry in Florida toward determining solutions to answer the state's energy challenge. This projec focuses on determining the potential of harnessing the ocean current resource and ocean thermal energy conversion (OTEC). The regulatory process both at State and Federal levels continues to evolve as the roles and interdependencies of the individual agencies are more clearly articulated. In addition, knowledge to make these decisions is being defined and targeted on a micro level necessary to assess individual devices. SNMREC's mission is to bridge the gap between concept and commercial deployment of ocean energy technologies by providing at-sea testing facilities for both ocean current and thermal energy research and for technology development. Research cuts across environmental, ecological, resource and technology.
	Budget: \$8,750,000
	Universities: UCF, FSU, ERAU, University of Miami, Oregon State University, University of Washington Pennsylvania State University, University of New Hampshire, University of Hawaii, University of Edinburgh, Heriot-Watt University, Nova Southeastern University, Virginia Polytechnical Institute, Florid Institute of Technology, Embry-Riddle Aeronautical University
	External Collaborators: Numerous industry and State and federal government as well as FFRDCs, suc
	as National Renewable Energy Laboratory, Woods Hole Oceanographic Institution, U.S. Department of Energy, U.S. Department of Interior (Bureau of Ocean Energy Management and Regulation ar
	Enforcement), U.S. Department of Commerce (National Oceanic and Atmospheric Administration), ar
	Florida Department of Environmental Protection to name a few
	Florida Department of Environmental, Protection, to name a few. Title: Buoy Array for Ocean Wave Power Generation

	Description: The objective of this project is to develop a novel design that can extract ocean wave energy	
	for commercial consumption. The design detailed herein is unique in that it is a wave point energy	
	harvester that is small in size and contains all of the mechanical components directly within the buoy. The	
	project focuses mainly on the mechanical system within the buoy as well as methods to control the	
	electrical load on the system. Different mechanical systems have been developed and tested on a motion	
	platform to simulate a vertical wave motion—these systems have been analyzed and compared in order to	
	provide an ever-increasingly effective design. The Harris Corp. have acted as new collaborators with the	
	project since October 1 st 2010, funding four UCF senior design teams in the development of a buoy for	
	wave power generation.	
	Budget: \$150,000 This project has been completed	
THDUST	7: Securing our Energy Storage and Delivery Infrastructure	
	Title: The Future Florida Grid: Ensuring a Reliable and Resilient Electrical Energy Transmission and	
	Delivery System in a Changing Environment	
	PI: Steinar Dale, Co-PIs: T. Baldwin, O. Faruque, J. Langston, P. McLaren, R. Meeker, K. Schoder, M.	
	Steurer - FSU	
	Description: The project research goal is to address the challenges of the reliable movement of electrical	
	energy throughout the state as the power system is transformed to include far more renewable and	
	alternative sources, increased use of distributed energy resources (including storage and electric vehicles),	
	emergence of microgrids, possible expansion of new very-large centralized baseload (nuclear), and	
	incorporation of new power conversion, transmission, measurement, communication and control	
	technologies (smart grid).	
	This project has also supported ongoing participation and contributions in national, state, and local power	
	and energy stakeholder groups, including the Gridwise Alliance, the North American Synchrophasor	
	Initiative (NASPI), the American Society of Mechanical Engineers' (ASME) National Energy Committee,	
	the Institute of Electrical and Electronics Engineers (IEEE) Power Engineering Society (PES), Florida's	
	Great Northwest Alternative Energy Advisory Council, and the Tallahassee-Leon Economic Development	
	Council (EDC) Energy and Environment Roundtable.	
	Budget: \$431,982 Back to Thrust 1: Overarching	
	This project has been completed	
	Title: Microgrids for a Sustainable Energy Future	
	PI: Chris S. Edrington, Co-PIs: Helen Li, Juan Ordonez, Jim Zheng, Mischa Steurer - FSU	
	Description: The primary aim of the project was to address research and development in the area of	
	microgrids. Specifically the focus was in the area of PV and Plug in Hybrid Electric Vehicles integration,	
	microgrid modeling and control, grid-tying inverters/converters, energy storage, tri-generation, and	
	standards development for smart grids.	
	Budget: \$719,333	
	This project has been completed	
	Title: Real-Time Power Quality Study For Sustainable Energy Systems	
	PI: U. Meyer-Baese, Co-PIs: Helen LI, Simon Foo, Anke Meyer-Baese, Juan Ordonez - FSU	
	Description: The main objective of this project is the collection of preliminary data for IESES proposals	
	that can be used to seek local, national and international sources of external funding from private and	
	government sponsors. The overall project has been split up in several independent subprojects to allow a	
	timely completion of the tasks. All tasks have been completed successfully.	
	Budget: \$15,000	
	80	

	This project has been completed			
Title: Planning Grant: Advancing Knowledge of Network Theory for Analysis and Design of S Grids				
	Description: With power grids evolving towards increasing size, complexity, and integration, it has			
	become more difficult to describe and predict their behavior, even under normal operational conditions			
	With technological development, climate change, and activities in the political arena, adverse			
	circumstances (natural disasters, intelligent adversary, software design errors, human errors, etc.) hav			
	become more probable and costly events. The Project seeks to provide industry and government wit			
	advanced analytical and computational tools necessary for the automated evaluation of the structura			
	resilience and reliability of power grids. The potential applications of the Project's results go beyond power			
	grids. Any infrastructure essential to our society and economy (e.g., computer, communication			
	transportation) can benefit from the Project's results. This project is complete.			
	Budget: \$15,000			
	This project has been completed			
	Title: Investigating the Effect of Appliance Interface Design on Energy-use Behavior			
	PI: Paul Ward, Co-PIs: Ian Douglas, David Eccles - FSU			
	Description: The primary objective of this research project was to identify the behavioral factors that			
	contribute to energy in/efficiency in the home. In particular, this project was designed to (a) examin			
	current state-of the science on behavioral factors that affect energy efficiency, (b) report on the efficienc			
	of typical energy consuming technology used in the home as well as existing programs designed to improv			
	efficiency, and (b) investigate the types of human-technology interactions and other behavioral factors that			
	lead to in/efficient energy use. To achieve these objectives this project proposed to use laboratory-based			
	experimental and field-based methods to (i) identify interface-design factors that constrain individuals to			
	behave in locally optimal but globally sub-optimal ways, and (ii) survey how cognitive, technological, and			
	motivational behavioral issues affect use in the home environment.			
	Budget: \$247,720			
	This project has been completed			
	Title: Energy Delivery Infrastructures			
	PI: Lee Stefanakos Co-PIs: Zhixin Miao - USF (Formerly Alex Domijan (PI) and Arif Islam (Co-PI). Left			
	USF).			
	Description: The proposed project is to simulate the effects of a renewable energy generation system in a			
	microgrid context to the distribution grid system. The proposed project is to simulate the combination of			
	renewable distributed generation and a battery system to assess the effects during critical conditions such a			
	power system peak.			
	A research opportunity is to investigate how existing tools can be applied to properly representing dynamic			
	and transient behaviors of microgrids. Therefore, in this project we propose using simulation tools to mode			
	a microgrid and investigate how well we can reproduce its measured behavior in the field			
	Budget: \$485,184			
	Title: Micro Battery Defense Development			
	PI: Chunlei Wang - FIU			
	Description: The microbattery market for new miniature portable electronic devices such as cardia			
	pacemakers, hearing aids, smart cards, personal gas monitors, micro electromechanical system (MEMS			
	devices, embedded monitors, and remote sensors with RF capability is increasing rapidly. Thin-film			
	lithium batteries are among the most advanced battery systems that can scale down to the dimensions that			
	81			

match the MEMS devices. However, these two-dimensional (2D) batteries are necessarily thin in order to maintain effective transport of Li ions. In order to power MEMS devices with limited device area (areal "footprints"), batteries must somehow make good use of their thickness. Three-dimensional (3D) configurations offer a means to keep transport distances short and yet provide enough material such that the batteries can power MEMS devices for extended periods of time. In this project, we focus on developing functional 3D microbatteries based on our carbon microelectromechanical systems (C-MEMS) technique. These microbatteries could offer order of magnitude increases in electrode surface area and charging capability than thin film batteries at the same size scale.

Budget:, \$192,418.30 – Not Funded by FESC

Title: Electrostatic Spray Deposition of Nanostructured Porous Metal Oxide Composite

PI: Chunlei Wang - FIU

Description: Recently, conversion reactions of interstitial-free 3d metal oxide structures (such as CoO, CuO, and NiO) with structures unsuitable for intercalation chemistry have nevertheless been shown to exhibit large, rechargeable capacities in cells with lithium. The specific capacities of these materials, which are potential candidates for the negative electrode, can be as high as 1,000 mAhg-1 (about three times of commonly used graphitic carbons). However, practical implementation using these metal oxides is hampered by the large capacity loss of the first cycle and poor material cyclability. These problems are partially attributed to the significant volume changes that occur during lithium uptake and removal (molar volume change of $\sim 100\%$), which causes mechanical failure and the loss of electrical contact at the anode. They are also due to aggregation of metal nanoparticles that appears during the process of discharging the metal oxide anodes. In order to overcome these two challenges and develop excellent rate capabilities and high power densities of Li-ion batteries, metal oxide composite electrodes with hierarchical mixed conducting network structures will be synthesized. We propose the preparation and testing of multicomponent metal oxide anode films with a variety of morphologies using a simple and versatile method based on the electrostatic spray deposition (ESD) technique. The ESD technique enables us to reproducibly fabricate thin film ceramic materials with simple, low-cost and controllable designed morphologies. ESDderived ceramic thin films we obtained including 3-D reticular, spongy-like, hollow sphere, dense, etc morphologies. The structures of these films can be easily tailored by changing the precursor solution component(s) and adjusting the substrate temperature. In this project, we plan to fabricate porous metal oxide materials, MxOy (M=Fe, Co). Material characterization methods (such as: SEM, TEM, AFM, BET, etc) will be used to study the correlation between ESD parameters and surface morphologies.

Budget: \$88,378.711 - Not Funded by FESC

Title: Fabrication and Investigation of Porous Tin Oxide Anodes for Li-Ion Micro Batteries

PI: Chunlei Wang - FIU

Description: The requirement of higher energy capacity microbatteries demands the exploitation of new substitute materials with higher energy capacity than traditional graphite. SnO2 has been considered as one of the most promising substitutes for the carbon anode in Li-ion batteries due to its high Li+ storage capacity. However, the practical application of SnO2 as anode is restricted by poor cyclability and rate capability due to large volume change during cycling, which can cause disintegration and electrical disconnection from current collector. In this project, we propose the preparation and testing of tin oxide anode films with a variety of porous morphologies using Electrostatic Spray Deposition (ESD) technique. Our research focus will be developing an ESD processing to fabricate tin oxide electrode with different pore sizes ranging from macropores to mesopores and down to micropores; constructing hierarchical porous tin oxide electrode by controlling process parameters and introducing a surfactant or polymer additives, and material characterization and electrochemical analysis in order to investigate the correlation

	between morphology and electrochemical performance and understand the underlying mechanism. The
	proposed research will significantly enhance our understanding of fundamental issues regarding intrinsi
	properties of porous SnO2 films as anode for Li-ion batteries.
	Budget: \$100,000 - Not Funded by FESC
	Title: Very High Energy-Density Ultracapacitors
	PI: E. Bakhoum, UWF
	Description: A new type of ultracapacitor that offers a capacitance density on the order of 500 Farads per
	cubic centimeter or higher has been created. The principle behind the new ultracapacitor structure is the
	insertion of a 100 nm-thick layer of barium strontium titanate as an interface between the activated carbo
	electrode and the electrolyte. The new ultracapacitors are highly needed in hybrid vehicle applications;
	any significant increase in the energy storage capability of the ultracapacitors leads to substanti
	improvement in the fuel efficiency of hybrid vehicles. Two manuscripts about this new development we
	published in 2009. Additional research is ongoing Not Funded by FESC
	Title: Secure Energy Systems
	PI: Pramod Khargonekar - UF
	Description : The goal of this project is to investigate the concept of secure energy systems and formulate
	concrete vision of a broad-based, comprehensive research program. An additional project goal is to develo
	architecture for modeling, analysis, and design of secure energy systems. An energy system consists of
	collection of interconnected subsystems representing energy generation devices, energy consumption
	devices, transmission, distribution, and storage devices, and communications and computing devices. Suc
	systems are dynamic and its operation is influenced by external perturbations. Definition of the system ar
	it environment depends on the problem of interest. This project is motivated by strong interest among keep
	decision makers in understanding and assuring security of energy systems in the face of various natural ar
	man-made threats. Increasing penetration of renewable energy sources and capabilities offered by sma
	grid have the potential to enhance or degrade security of energy systems. Thus, these new developmen
	present additional motivation for understanding of secure energy systems. Whereas there is an intuitiv
	understanding of security and assurance, much work remains to be done in formulating precise definition
	that cover problems of interest and devising an overall architecture that may facilitate a system lev
	analysis and design of such secure energy systems. Taking into account rapid changes in the energy issu
	in a wide variety of private and public sectors, this project is a proactive effort to develop a vision ar
	architecture for analysis and design of secure energy systems. It is expected that the results of this proje
	will lead to future development and integration of specific analysis and design algorithms and software th
	will assist system designers in assessing and ensuring an appropriate level of system security.
	Budget : \$220,000
	Back to Thrust 1: Overarching
	Title: Optimization, Robustness and Equilibrium Modeling for the Florida Smart Grid
	PI: Panos Pardalos - UF
	Description: This project began in January 2011. It aims to develop algorithms for optimal design an
	functioning of Florida's next generation of power transmission and distribution systems that with
	incorporate the new realities of the grid. The goal is to create innovative real time capabilities for
	optimal location of renewable energy source; 2) detection and prevention of instabilities and outages; an
	3) operating models including generalized Nash equilibrium problems in the electricity market.
	Budget : \$30,000
Polic	
	Title: Economic Impacts of Renewable Energy and Energy Efficiency Policies
	83

PI: Theodore Kury – UF (PI use to be Mark Jamison)

Description: To serve its mission and contribute to FESC's fulfillment of its mission, PURC is conducting the three projects described below. These projects will be completed in two years and will deliver policy relevant reports and academic quality papers. The projects are:

1) Economic and Job Impacts of State Renewable Energy and Energy Efficiency Policies This project will provide empirical estimates of state renewable energy and energy efficiency policies on economic development and jobs.

2) Electric Grid Impacts of State Renewable Energy and Energy Efficiency Policies This project will provide an estimate of the impacts of renewable energy policies on the electric grid. It will fill a gap in the literature for Florida, which as to date focused on the impacts on electricity generation.

3) Effects of Energy Commodity Profit Margins on Effectiveness of Energy Efficiency Programs This project will test an assumption that is built into many state energy policies and that is held by many policy makers at the national level, namely that utilities would improve consumer energy efficiency practices if utility prices were decoupled from utility profits.

Budget: \$150,000

Title: Environmental Impacts of Energy Production Systems: Analysis, Evaluation, Training, and Outreach

PI: Amy B. Chan-Hilton, **Co-PIs:** Gang Chen, Wenrui Huang, Michael Watts, Ming Ye, Paul Lee - FSU **Description:** The goal of this project is to develop tools and conduct research to objectively assess environmental and water resources needs and constraints while developing prudent energy strategies and policies. The focus of this research will be on fuel cycle and energy production systems. The objectives of this project were to analyze the environmental and water resources demands and potential impacts, specific to Florida's unique geographical challenges, of fuel cycle systems and develop an objective environmental impact screening and evaluation tool or decision support system for energy planning and policy making by Florida's industry, utilities, and government.

As Florida develops its long-term energy strategy, multiple efforts are ongoing to develop and apply a wide range of energy technologies that are sustainable and carbon-neutral. But pragmatic issues related to environmental impact and sustainability need to be addressed before these technologies may be implemented. This project directly addressed the FESC's Thrust 6 on "Energy systems and their environmental and economic impacts." This project also directly addresses IESES's Objective 4 on unique geographical challenges and Objective 5 on sustainable energy engineering, science and the sustainable energy economy.

Budget: \$118,470

External Collaborators: Florida Department of Environmental Protection

This project has been completed

Title: Promoting Energy and Land Use Through Land Use, Transportation and Green Infrastructure Polices**PI:** Tim Chapin, **Co-PIs**: Ivonne Audirac, Chris Coutts, Greg Thompson, Mark Horner - FSU

Description: In response to the many issues related to energy provision, energy sustainability, and GHGs, in 2007 Governor Crist created an Action Team on Energy and Climate Change. This group was tasked with investigating and recommending strategies for reducing GHG emissions, creating more sustainable energy systems in Florida, and for establishing Florida as an international leader in innovative energy provision. Related to this, the 2008 session saw the Florida Legislature pass HB 697 which, among many things, requires every local government in the state to address energy systems and GHG emissions explicitly within their comprehensive plans. Currently, the linkages between energy planning, environmental and economic sustainability, land use and transportation planning, and GHG reductions have

	never been stronger in Florida. This project is aimed at continuing the momentum in Florida for developing		
	broad-based solutions to these problems by helping to develop a knowledge base for informing state pol		
	in the areas of energy, sustainability, and land use and transportation planning.		
	Budget: \$168,185		
	This project has been completed		
	Title: Political and Economic Institutions Regarding Siting of Energy Facilities		
	PI: R. Mark Isaac, Co-PIs: Douglas Norton, Svetlana Pevnitskaya - FSU		
	Description: The "Hold-Out" project evaluates the "hold-out" concept, which is discussed repeatedly in the context of public policies regarding land acquisition and facilities siting, but a clear definition is elusive. To economists, the most likely definition is that a profitable amalgamation of land parcels by one buye from competing sellers does not occur because of the failure of the private bargaining process. However, sometimes the term seems to be used more for delay instead of failure in bargaining, or even the very different concept of creation of any bilateral bargaining situation of the buyer and the "last" or "holding		
	out" seller, which may be inconvenient to the buyer but is immaterial in terms of economic efficienc unless efficient trades actually fail. The experimental design is complete, the programming is complete Institutional Review Board approval has been obtained, and we have conducted two complete experimenta treatments. This research was presented at one of the Presidential Sessions at the 2009 Meetings of the Southern Economics Association in November in San Antonio.		
	Budget: \$79,621		
	This project has been completed Title: Experimental Investigation of Economic Incentives of Policies, Institutions and R&D in		
	Environmental Conservation PI: Svetlana Pevnitskaya, Co-PI: Dmitry Ryvkin - FSU		
	Description: Policies and institutions aiming at reducing pollution and battling climate change often do not reach desirable results because actual decisions of governments and economic agents deviate from those predicted by theory. We employed methods of experimental economics to find and explore such deviation and their causes, and used the findings to modify theory and design better policies and institutions. In the project, we constructed a theoretical model of decisions in a dynamic environment with costs of pollution and climate change, while testing the theory in laboratory experiments with human subjects. We studie actual behavior and explore responses to changes in the environment, production technologies, investment in clean technology and institutions. This project is complete. Budget: \$43,217		
	This project has been completed		
	Title: Fusion Energy Spheromak Turbulent Plasma Experiment-STPX		
	PI: Charles A. Weatherford, Co-PIs: Kyron Williams, Ephrem Mezolin - FAMU		
	Description: The Florida A&M University's Center for Plasma Science and Technology (CePaST) has		
	nearly completed the construction of a spheromak fusion reactor. A spheromak is one of a general class of		
	experiments used to investigate key plasma physics principles relevant for the development of magnetical		
	confined, controlled thermonuclear fusion as a source of electrical power. This project involves		
	collaboration between Florida A&M University CePaST, West Virginia University, and Auburn University		
	The spheromak turbulent plasma physics experiment (STPX) is being constructed at FAMU in a facility		
1	especially built for the STPX experiment. Fusion research is a key element in the nation's long term energy		
	supply strategy, The spheromak concept may be a possible alternative to the tokamak concept (deployed a ITER) which affords access to fundamental fusion science issues supportive of fusion while allowing us to		

maintain and nurture an American fusion scientific workforce. This project will determine, using a fast duty cycle between theory, experiment, and simulation, the essential elements required for full kinetic modeling of an entire spheromak plasma using ab initio MHD with direct modifications from new turbulence physics. The project will focus on the management of fluctuations and transport in a spheromak plasma using new turbulence physics models and comprehensive helicity control. We will employ high time- and spatial-resolution measurements of electron temperatures, ion temperatures, and magnetic field fluctuations to investigate, understand, and eventually control reconnection driven heating as a means of increasing the plasma temperature of spheromak plasmas. We will use divertor diagnostics of radiation and particle transport along with edge biasing for electric field control to explore the effects of driven flows on confinement and heating in spheromak plasmas with microparticles and will investigate the effects of MW pulses coupled to protons on the plasma current and confinement.

Budget: \$950,000 – *Not Funded by FESC*

Universities and External Collaborators:

Dr. Earl Scime, West Virginia University

Dr. Ed Thomas, Auburn University

Dr. Simon Woodruff, Woodruff Scientific, Inc

Title: Marketing Strategies to Incentives Entrepreneurship and Innovation in the Development of Sustainable Energy

PI: Joe Cronin - FSU

Description: The objective of this project was to investigate the role of market pull strategies in advancing sustainability goals. Specifically, the intent is to identify what "drives" consumers' attitudes and behaviors relative to sustainable products. This includes consumers' personal attitudes, opinions, and beliefs, their perceptions of their own and organizations' abilities to affect or change the environment in which they live, and their personal characteristics (e.g., demographics). In addition, in collaboration with the College of Communications, the strengths and weaknesses of the various communication modalities that can be used to deliver sustainability knowledge to consumers (e.g., advertisements, testimonials, expert word-of-mouth communications, public relations, publicity, etc) were assessed. Specifically, the research attempts to identify the optimal market pull modality; that is, the means by which to deliver to consumers the knowledge that drives the purchase of sustainable goods and services. The overall objective of the research is to provide much needed market pull information for organizations embarking on "green" marketing strategies; that is, firms in the process of developing or expanding their mix of environmentally friendly goods and services.

Budget: \$191,555

This project has been completed

Title: Energy Sustainable Florida Communities

PI: Richard Feiock, Co-PIs: Ivonne Audirac, Keith Ihlanfeldt - FSU

Description: The objective of NESC is to stimulate innovation and energy investments that will accelerate energy savings by local governments by sharing best practices and organizing and managing large scale collaboration and bulk buying projects.

Florida State University has been working with U.S. DOE contributing surveys, research and outreach assistance to assist in efforts to promote investment, collaboration, and bulk purchasing by local governments that will achieve significant cost savings. This includes organizing NESC conference calls co-hosted by hosted by FSU and DOE, conducting several surveys, and hosting a meeting of Florida local government EECBG sub-awardees.

These initial research efforts and conference calls have been successful in identifying broad interest in

	collaboration and bulk buying. They also revealed significant barriers to collaboration that need to be			
	addressed including issues related to coordination within governments, among governments and with other			
	organizations.			
	We are now undertaking activities to address these barriers to collaboration at three levels: First we are conducting focused regional workshops throughout the state. By bringing interested governments in each			
	region together with experts in collaboration, governance, finance, and purchasing we will identify specific projects and design the mechanisms to put the projects in place. Second, are expanding our statewid dialogue on a more systematic basis and share the insights and successes of our regional workshops. Third we are working with universities and other partners throughout the U.S. to share strategies and insights an			
	help replicate our successes in other states. By expanding our efforts and formalizing the network we will			
	make large scale energy savings a reality.			
	Budget: \$125,424			
	This project has been completed			
	Title: Development of a Renewable Energy Research Web Portal			
	PI: Charles R. McClure, Co-PIs: Ian Douglas, Chris Hinnant - FSU			
	Description: This project identified, organized, and made available via a web portal, research generated as			
	part of the FESC effort as well as other selected related information resources and tools as identified by			
	FESC participants. The goal of this project was to provide IESES, FESC, researchers, and others in the			
	state of Florida with the research information they need to accomplish statewide energy goals. An initi			
	product from this project was an operational web portal that identifies, organizes, and provides access to a			
	range of FESC and other research related to renewable and alternative energy information. A second			
	product was research results on extending technologies that allow users to share information and			
	grow/sustain the web portal through a range of social networking techniques. This research attempts to			
	position FSU to seek additional external funding related to interactive databases and web portals. The			
	ultimate expected outcomes resulting from the project include increased IESES and FESC researcher			
	productivity; increased leverage and collaboration of FESC resources and funding; and improved policy-			
	and decision-making regarding the future uses and development of renewable and alternative energy in			
	Florida.			
	Budget: \$194,542			
	This project has been completed Title: Planning Grant: Hydrogen Storage Using Carbon-Based Adsorbent Materials			
	Pli: Efstratios Manousakis - FSU			
	Description: This project was a theoretical investigation of a variety of carbon based nano-porous			
	materials, such as activated carbon or single-wall or multi-wall carbon nanotubes, which can be used to			
	store and transport hydrogen. We find that by doping with metallic elements, the micro-surfaces of these			
	carbon-based porous materials provide increased van der Waals forces to the adsorbed hydrogen molecules;			
	this effect significantly enhances the volumetric energy density for hydrogen storage and we caried out a			
	full theoretical investigation to find the optimum conditions. This project is complete.			
	Budget: \$15,000			
	This project has been completed			
Educa	ation and Outreach			
	Title: Florida Advanced Technological Education Center (FLATE)			
	PI: Marilyn Barger - UF			
	Description: FLATE (Florida Advanced Technological Education Center) is FESC's partner to develop			
	statewide curriculum frameworks for technical A.S./A.A.S. degree programs supporting existing and new			
	87			

energy business sectors. FLATE develops the frameworks and facilitates their progress through the multiple sequential industry-validation, student competencies based, FLDOE procedure. FLATE also develops new courses and provides faculty professional development as required for each new program of study. Additionally FLATE helps colleges in the State College System implement the new frameworks in their institutions. To support the new curriculum, FLATE will work closely with the FESC Public Outreach and Industry Partnership programs to provide additional professional development opportunities for teachers and faculty to upgrade and update their STEM knowledge base.

Budget: \$300,000

External Collaborators: Brevard Community College; Tallahassee Community College; Daytona State College; Central Florida Community College; Polk State College; Florida State College at Jacksonville; Valencia Community College; School District Hillsborough County; Florida Department of Education – Division of Adult and Career Education; West Side Technical School; WFI Banner Center for Energy; Advanced Technology for Energy and Environment Center (ATEEC); University of West Florida, Dept of Construction Technology; WFI Banner Center for Construction; WFI Banner Center for Alternative Energy; USF College of Engineering; Madison Area Technical College ATE project for Alternative Energy certifications; Milwaukee Area Technical College Energy Conservation and Advanced Manufacturing Center (ECAM); Florida Energy Workforce Consortium (FEWC); TECO; Progress Energy; ISTEC (Ibero Science and Technology Education Consortium).

Title: Outreach Activities for FESC

PI: Pierce Jones, Kathleen C. Ruppert, Hal S. Knowles III, Nicholas Taylor, Barbra Larson, Craig Miller-UF

Description: Developing educational outreach programs and materials designed to deliver practical, applicable information and knowledge on energy-related topics to the general public as well as targeted to specific audiences such as builders, planners, engineers, architects, small businesses, local governments, and utilities through the Cooperative Extension Service and others. By focusing educational programming on climate and efficient use of energy and water, the program aims to provide the knowledge needed by building and energy professionals, local governments, and the general public, to significantly reduce greenhouse gas emissions in Florida.

Budget: \$497,670

External Collaborators: Primarily DCA, FSU, UCF (FSEC), USF, and DEP with many others as well.

Title: UFTR Digital Control System Upgrade for Education and Training of Engineers and Operators **PI:** Gabriel Ghita – UF (PI use to be Alireza Haghighat; he has left UF)

Description: The goal of this project is to contribute to a major initiative on design, licensing and construction of a fully digital control system for the University of Florida Training Reactor (UFTR). This makes the UFTR the first operating nuclear power plant in the United States that uses a fully digital control system. This facility will provide for the training and education of the necessary workforce in the area of digital control and instrumentation for nuclear reactors. With this effort, a new focus/certificate on digital control and instrumentation will be developed at the Nuclear and Radiological Engineering (NRE) Department. Further, the UFTR facility will offer training courses for community colleges (Central Florida, Indian River, and Jacksonville) in the State of Florida, personnel from nuclear utilities and government agencies including the Nuclear Regulatory Commission (NRC). The project has already received significant funding from industry and government in form of grants, contracts, equipment/systems, and engineers' time.

Budget: \$308,000

External Collaborators: Several engineers from AREVA NP Inc & Siemens Corporation

Title: Energy and Efficiency Video Public Service Announcements
PI: Andy Opel, Co-PIs: Phil Steinberg, Leslie France-Patterson, Laura Arpan, Ian Weir - FSU
Description: This interdisciplinary team produced 6-8 short (30-second/one-minute) video public service
announcements (PSAs) that address issues of energy and efficiency and one 12-15 minute informational documentary targeted to Elected to Elected and the Coverner's efficiency targeted to Elected to E
documentary targeted to Florida legislators and the Governor's office. These videos will be tailored to
reinforce existing IESES efforts. Budget: \$200,720
This project has been completed
Title: Planning Grant: Climate modeling and Outreach Activities
PI: Shawn R. Smith, Co-PIs : Steve Cocke, David Zierden, James O'Brien, Julie Harrington - FSU
The objective of the planning grant is to develop at least one external funding proposal that focuses of
areas of climate modeling and/or climate outreach that support the activities of the IESES. The focus of ou
activities has centered on evaluating the potential offshore wind resource in the northeastern Gulf of
Mexico and elsewhere in Florida's waters. Preliminary research has been completed using observation
from instrumented Air Force towers and buoys in the waters around Florida. The existence of wind power
capacity has been identified at the assessed locations. Due to the sparseness of in-situ wind data in th
region, a numerical modeling approach will need to be pursued to develop a wind climatology wit
sufficient spatial and temporal scales to further define the offshore wind power capacity.
A vast portion of the work conducted focused on outreach and education. When we began our project, th
idea of offshore wind power in Florida was not even on the radar of the Florida Legislature or th
renewable energy sector at large. We worked to raise the visibility of offshore wind as an energy resource
for Florida by attending meetings, connecting with the wind power industry in Florida, and briefing tw
members of the Florida Legislature and presenting to the Florida Energy and Climate Commission. As
result of these connections, we submitted a preliminary proposal to Siemens Wind Power and have
developed a network of colleagues both within FSU and the private sector that are interested in further
developing Florida's offshore wind resource.
Budget: \$15,000
 This project has been completed
Title: Visiting Law Professor
Principal Investigator: JB Ruhl, Jim Rossi Co-PI: Uma Outka - FSU
Description: Two-year Visiting Scholar, Uma Outka, at the College of Law researched the interfac
between land use law and innovative energy solutions and delivering academic symposia and graduat
student seminars on the research scope, comprising Sustainable Energy Research Project (SERP) within
Environmental and Land Use Law Program. This project is complete.
Budget: \$214,603
This project has been completed C Phase 2 Technology Commercialization

Title: Development of a Low Cost Concentrating Solar Energy System Using Solar Sausages

PIs: David VanWinkle, Sean Barton – UF

Description: Beginning in late 2010, weekly meetings have been held at HHH offices in Tallahassee that include representatives of the several entities involved in deploying the "Solar Sausage" concentrating system at the Yulee St. site in Tallahassee. The entities include Pro Solar Inc., Barkley Consulting Engineers Inc., Winton Engineering PA, and Applied Research and Design Inc. A series of 50-foot long prototype sausages were made and inflated on site. Many issues were identified that needed to be resolved before manufacturing and deploying several hundred solar sausages on site including methods of constructing, mounting, and operating the balloons, distribution of air and electricity, and removal of heat. **Industry Partner:** Hunter and Harp Holdings (HHH)

Title: Stress Evolution in Solid-State Li-Ion Battery Materials

PI: Kevin S. Jones – UF

Description: Li-ion battery (LIB) technology is promising for use in electric drive vehicle (EDV) and stationary energy storage applications. However, challenges with materials safety, performance, cost, and manufacturing scalability have largely prohibited LIB implementation in these situations. Challenges in stress evolution during the fabrication and processing of the elements of the cells remain and are not well understood. In this study the roles of component fabrication and processing conditions on the resulting stresses in the materials are being evaluated. Thin film battery components will be deposited on stainless substrates using a novel fabrication method invented and patented by Planar Energy and the components will be subjected to different annealing treatments. A novel curvature measurement system will be used to characterize the stress in the component layers both after deposition and annealing and structural analysis techniques will be used to correlate the resultant component material microstructure and crystallographic phase(s) with the measured stresses.

Industry Partner: Planar Energy

Title: SWNT Based Air Cathodes for Fuel Cells & Metal Air Batteries

PI: Andrew G. Rinzler – UF

Description: The goal of this project is to develop and use novel gas diffusion oxygen reducing electrode (air cathode) based on single wall carbon nanotube (SWNT) films in zinc-air batteries and fuel cells. Metal-air batteries, utilizing surrounding air as an inexhaustible cathode material have the highest specific and volumetric energy density of any primary battery system available. Gas diffusion oxygen electrodes, where molecular oxygen is electrocatalytically reduced, are vital to battery and fuel cell performance. The air cathode should be permeable to air or another source of oxygen, but must be substantially hydrophobic so that electrolyte will not leak though it, and have an electrically conductive element connected to external circuitry. Generally, conventional air cathode is a thick multilayer film comprising carbonaceous powder mixed with nanoscale metal catalyst to promote oxygen reduction and hydrophobic polymer additive pressed onto electrically conductive layer. While noble metals such as platinum that are commonly used as catalysts in conventional air cathodes offer the advantages of intrinsic catalytic activity, their deficiency in resource, high costs, and susceptibility to catalyst poisoning, have become a serious concern for commercial applications. An optimized SWNT based air cathode catalyst that would constitute a significant improvement in existing technologies is being developed. This new system avoids precious metals, is not poisoned, is thin, light-weight, and resists electrolyte flooding. **Industry Partner:** nRadiance LL

Title: Uni-Directional Impulse Turbine for the Powering of Offshore Monitoring Systems

PI: Zhihua Qu, Co-PI: Kuo-chi Lin – UCF

Description: Numerical modeling and experimental testing of turbine for wave energy conversion. The University of Central Florida and Harris Corporation have joined efforts to design, build and analyze a wave powered abandoned oil well monitoring system for use in the Gulf of Mexico. This system proposes a fully automated oil leak detection system which is self-powered by the local ocean energy which is converted to electricity, conditioned and sent from the surface buoy to the ocean floor to supply power for an abandoned oil well monitoring system.

Industry Partner: Harris Corporation

APPENDIX B – ACCOUNTABILITY MEASURES – DATA

1. <u>Competitive Grants Applied by all SUS faculty in Energy Area</u>

During Oct. 1, 2011 to Sep 30, 2012 Period (Back to top)

SUS energy faculty submitted **259 funding proposals amounting to \$334,176,368** during the twelvemonth period of Oct 1, 2011 through Sep 30, 2012. The information was collected through the databases at each university, published news releases, and faculty input. The database information was reviewed carefully and listings that are not energy related were deleted.

Due to confidential nature of this information, the listing of the proposals submitted is not given in this report; however the break down by university and by agency are provided below:

University	# of Proposals Submitted	Funding Requested
FAU	10	\$6,021,633
FSU	6	\$3,076,887
UCF/FSEC	76	\$157,308,363
UF	145	\$132,057,106
USF	22	\$35,712,379
TOTALS	259	\$334,176,368

Agency	# of Proposals Submitted	Funding Requested
DOD	5	\$614,532
EDA	2	\$2,310,434
Industry	58	\$9,578,240
NASA	3	\$1,475,975
NSF	69	\$54,632,453
Other	62	\$42,545,914
US DOE	55	\$213,175,478
USDA	5	\$9,843,340
TOTALS	259	\$334,176,368

2. <u>Competitive Grants Received by All SUS Faculty in Energy Area</u> During Oct. 1, 2011 to Sep 30, 2011 Period (<u>Back to top</u>)

All SUS energy faculty information is listed below to show the scope of the SUS research program. This information might be helpful in forming collaborative teams, informing the outside world (e.g., industry) of FESC's research interests. The information was collected through the databases at each university, published news releases, and faculty input.

The SUS faculty received **274 research and education awards totaling \$64,473,021** during the twelvemonth period of Oct 1, 2011 through Sep 30, 2012. Note many of the awards were based on proposals submitted prior to this period, but the number demonstrates the competitiveness of the SUS faculty in this arena. The information was collected through the databases at each university, published news releases, and faculty input. The database information was reviewed carefully and listings that are not energy related to energy were deleted.

#	Faculty	University	Source/Agency	Project Title	Start Date	End Date	Amount
1	S. Skemp	FAU	US DOE	Southeast National Marine Renewable Energy Center - Advanced Water Power Projects (Renamed 2008 Solicitation)	9/30/2010	8/31/2013	\$250,000
2	Marilyn Barger	FLATE	NSF	Florida's Advanced Technological Education Center of Excellence			\$2,800,000
3	Chris Edrington	FSU	RCT Systems	Intermediate Transient Support of High Rate Pulsed Loads	7/17/2012	1/21/2013	25,000
4	Dale Steinar	FSU	Office of Naval Research	Additional MVDC Tasks - The Swampworks Program	5/1/2012	4/30/2013	807,702
5	Gang Chen	FSU	UF	Usage of Microbial Fuel Cell Technology in Landfills	10/1/2011	09/31/12	35,000
6	Richard Feiock	FSU	UF	Putting Solid Waste To Work	9/15/2012	9/14/2013	40,000
7	Richard Meeker	FSU	DOE	The Sunshine State Solar Grid Initiative	12/6/2011	10/31/2012	443,149
8	Richard Meeker	FSU	FL Tech Devl.	MegaWatt Ventures	9/6/2012	9/30/2012	3,650.33
9	PI: Dr. Ali Orooji; CoPI(s): Dr. Issa Batarseh	UCF/FSEC	Eustace-Kwan Family Foundation	RF - Computer Programming Team (ID: 1048341)	8/1/2008	4/15/2015	\$0
10	PI: Dr. Issa Batarseh	UCF/FSEC	NSF	US-Jordan Cooperative Science: Chaos Theory on Micro-Inverters for Photovoltaic (PV) Systems (ID: 1052937)	10/1/2012	9/30/2014	\$89,504
11	PI: Dr. Issa Batarseh; CoPI(s): Dr. Louis Chow, Dr. Wasfy Mikhael, Dr. Zhihua Qu, Dr. Zheng Shen, Dr. Xinzhang (Thomas) Wu	UCF/FSEC	State of Florida (Legislature)	Florida Energy Systems Consortium (ID: 1048032)	7/1/2008	6/30/2013	\$300,000
12	PI: Dr. Zheng Shen	UCF/FSEC	NIST	Development and Electro-Thermal- Mechanical Characterization of High Temperature Packaging for Wide Bandgap Power Semiconductors (ID: 1045628)	10/1/2007	8/31/2011	\$408

13	PI: Dr. Zheng Shen	UCF/FSEC	UCF/I-4	I4: NASA SBIR Phase II: High- Temperature, Wirebondless, Ultra- Compact Wide Bandgap Power Semiconductor Modules for Space Power Systems (ID: 1052023)	7/1/2011	6/30/2012	\$24,988
14	PI: Dr. Zheng Shen	UCF/FSEC	Advanced Power Electronics (APECOR)	NASA SBIR Phase II: High-Temperature, Wirebondless, Ultra-Compact Wide Bandgap Power Semiconductor Modules for Space Power Systems (ID: 1052021)	7/1/2011	9/30/2012	\$68,735
15	PI: Dr. Zhihua Qu	UCF/FSEC	UCF/I-4 (16408104)	Autonomous and Cooperative Control of Unmanned Air Systems (ID: 1047046)	7/1/2008	6/30/2012	\$558
16	PI: Dr. Zhihua Qu	UCF/FSEC	UCF/I-4	I-4: Modeling and Control of Unmanned Aerial Vehicles (ID: 1051675)	7/1/2011	6/30/2012	\$5,000
17	PI: Dr. Zhihua Qu	UCF/FSEC	L3 Communications Link Simulation & Training	Modeling and Control of Unmanned Aerial Vehicles (ID: 1051676)	7/1/2011	12/31/2012	\$15,000
18	PI: Dr. Zhihua Qu; CoPI(s): Marcel Ilie	UCF/FSEC	Florida High Tech Corridor Council	I-4: Unidirectional turbine for wave energy extraction (ID: 1053530)	7/1/2011	6/30/2012	\$10,000
19	PI: Dr. Zhihua Qu; CoPI(s): Marcel Ilie, Dr. Kuo-Chi Lin	UCF/FSEC	Harris Corporation	Power-generation buoy and deep-sea monitoring system (ID: 1051436)	9/1/2010	8/7/2012	\$10,000
20	PI: Colleen Kettles	UCF/FSEC	Leonardo Technologies, Inc.	Space Coast Clean Cities Coalition Support 2012 (ID: 1053428)	11/16/2009	10/31/2012	\$25,000
21	PI: Dr. Ali Raissi	UCF/FSEC	Harris Corporation/GCS D Division	Analysis and Interpretation of the HARRIS Hydrocarbon Upgrading Project (ID: 1053308)	11/8/2011	6/30/2012	\$19,657
22	PI: Dr. Ali Raissi	UCF/FSEC	Harris Corporation	Hydrocarbon Upgrading Study with the Bitumen Quantitative Investigation (ID: 1053726)	2/1/2012	9/30/2012	\$32,603
23	PI: Dr. Ali Raissi	UCF/FSEC	Florida Solar Energy Center	Large-Quantity Production of the Chemochromic Hydrogen Sensing Pigment (ID: 1053933)	3/19/2012	6/30/2012	\$17,057
24	PI: Dr. Ali Raissi	UCF/FSEC	Cella Energy Limited	Nanostructured Polymer Scaffolds as H2 Storage Materials (ID: 1053544)	5/1/2012	5/31/2014	\$295,251
25	PI: Dr. Ali Raissi; CoPI(s): Dr. Jong Baik, Dr. Nazim Muradov	UCF/FSEC	Florida Solar Energy Center	A Combined Gasification Fischer-Tropsch Reactor for Liquid Fuel Production being developed at FSEC	4/5/2012	7/5/2012	\$96,085
26	PI: Dr. Darlene Slattery; CoPI(s): Mr. James Roland	UCF/FSEC	Florida Solar Energy Center	Laboratory Renovation (ID: 1054076)	6/1/2012	8/30/2013	\$400,000
27	PI: Dr. David Block; CoPI(s): Dr. James Fenton, Dr. Ali Raissi	UCF/FSEC	US DOE	Transfer of DOE Agreement DE-FC36- 04GO14225 Florida Hydrogen Initiative to Florida Solar Energy Center (ID: 1047934)	5/1/2009	12/31/2012	\$1,342,729
28	PI: Dr. David Block; CoPI(s): Mr. John Harrison	UCF/FSEC	US DOE	Phase 2 of the Southern Region Resource and Training Program as Part of the Southern Alternative Energy Training Network (ID: 1052716)	10/1/2011	12/30/2014	\$1,000,450

29	PI: Dr. David Block; CoPI(s): Mr. Philip Fairey, Dr. James Fenton	UCF/FSEC	State of Florida (Legislature)	Florida Energy Systems Consortium (ID: 1048385)	7/1/2008	12/31/2012	\$40,000
30	PI: Dr. James Fenton; CoPI(s): Dr. Nahid Mohajeri, Dr. Darlene Slattery	UCF/FSEC	US DOE	Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2 of DE-PS36-05GO95020) (ID: 1043309)	4/1/2006	5/31/2012	\$224,104
31	PI: Dr. Lixing Gu; CoPI(s): Mr. Richard Raustad	UCF/FSEC	US DOE	Continuity and Innovation in the Development and support of Energy Plus (ID: 1052240)	6/20/2011	6/19/2013	\$1,328,000
32	PI: Dr. Lixing Gu; CoPI(s): Mr. Richard Raustad	UCF/FSEC	Florida Solar Energy Center	Increase DX Cooling Coil Efficiency by Reducing Coil Surface Tension (ID: 1054078)	6/1/2012	5/31/2014	\$157,493
33	PI: Dr. Marianne Rodgers	UCF/FSEC	Office of Research & Comm.	IH: Development and Characterization of Anion Exchange Membranes and Anion Exchange Ionomers for Alkaline Fuel Cells (ID: 1054035)	5/1/2012	12/31/2012	\$7,500
34	PI: Dr. Nahid Mohajeri	UCF/FSEC	Florida Solar Energy Center	Preparation of Irreversible Chemochromic Pigments for Hydrogen Sensor Application (ID: 1054150)	5/15/2012	10/15/2012	\$5,916
35	PI: Dr. Neelkanth Dhere	UCF/FSEC	PV Integrated	Prepare CigSeS Cell Coupon and Test PV Modules at High Voltage (ID: 1052975)	10/1/2011	9/30/2012	\$18,000
36	PI: Dr. Neelkanth Dhere	UCF/FSEC	Instituto Militar de Engenharia	Science Without Borders Program (ID: 1053957)	7/1/2012	12/31/2012	\$14,089
37	PI: Dr. Neelkanth Dhere	UCF/FSEC	Corning, Inc.	To Execute the Comprehensive Test Plan for Corning Inc. (ID: 1052841)	1/1/2012	6/30/2013	\$636,470
38	PI: Dr. Nicoleta Hickman	UCF/FSEC	UCF/Space Research Initiative	Electrostatic Dust Hazard Prediction and Control for Lunar and Mars Missions (ID: 1050094)	4/6/2009	6/30/2012	\$52,066
39	PI: Dr. R. Paul Brooker	UCF/FSEC	Florida Solar Energy Center	Vanadium and Bromine Redox Flow Batteries (ID: 1054079)	4/15/2012	10/14/2012	\$81,500
40	PI: Dr. Winston Schoenfeld; CoPI(s): Mr. Robert Reedy	UCF/FSEC	SEMATECH	PV Manufacturing Consortium (ID: 1053069)	9/1/2011	8/31/2016	\$3,606,853
41	PI: Mr. Carlos Colon; CoPI(s): Mr. Danny Parker	UCF/FSEC	Florida Natural Gas Association	Side by side Testing of High Efficiency Condensate Natural Gas and Hybrid Solar Hot Water Heating (ID: 1053108)	10/1/2011	9/30/2013	\$24,000
42	PI: Mr. Danny Parker	UCF/FSEC	US DOE	ARRA-Technical Assistance to Lawrence Berkeley National Laboratory with the Home Energy Saver Software (ID: 1052739)	1/31/2012	12/30/2012	\$47,914
43	PI: Mr. David Chasar; CoPI(s): Mr. David Click	UCF/FSEC	Atlantic Housing Partners	Task 1: Energy Analysis and Performance Testing of Multifamily Dwellings (ID: 1046460)	8/10/2007	12/31/2012	\$9,570
44	PI: Mr. David Chasar; CoPI(s): Mr. David Click	UCF/FSEC	Atlantic Housing Partners	Task 3: Energy Analysis and Performance Testing of Multifamily Dwellings (ID: 1046558)	8/10/2007	12/31/2012	\$15,430
45	PI: Mr. David Chasar; CoPI(s): Mrs. Janet McIlvaine	UCF/FSEC	US DOE	Building Energy Model Development for Retrofit Homes (ID: 1054138)	6/19/2012	9/30/2012	\$68,838

46	PI: Mr. David Click; CoPI(s): Mr. Houtan Moaveni	UCF/FSEC	AAA Solar Source	Acceptance Test-FDOT Turkey Lake (ID: 1054547)	8/29/2012	9/28/2012	\$1,350
47	PI: Mr. David Click; CoPI(s): Mr. Houtan Moaveni, Mr. Robert Reedy	UCF/FSEC	Florida State University	SUNGRIN Simulation-Assisted Understanding of the High-Penetration PV Effects and Requirements (ID: 1054485)	5/1/2012	8/31/2015	\$50,000
48	PI: Mr. David Click; CoPI(s): Mr. John Del Mar	UCF/FSEC	Colegio Rochester	Rochester Solar System Design Review (ID: 1053708)	3/15/2012	4/30/2012	\$1,763
49	PI: Mr. Eric Martin; CoPI(s): Mr. David Chasar, Mr. James Cummings, Mr. Philip Fairey Mrs. Janet McIlvaine, Mr. Danny Parker, Mr. Robin Vieira, Mr. Charles Withers	UCF/FSEC	US DOE	Building America Partnership for Improved Residential Construction (BA- PIRC) Task Order 3 (ID: 1053456)	4/9/2012	12/31/2012	\$1,680,404
50	PI: Mr. James Cummings; CoPI(s): Mr. David Click, Mr. Houtan Moaveni, Mr. Robert Reedy, Mr. Charles Withers	UCF/FSEC	Florida Power and Light	Assessment of Energy and Peak Demand Savings of a Solar-Powered Space Conditioning System (ID: 1052396)	11/4/2011	12/31/2013	\$108,112
51	PI: Mr. John Del Mar; CoPI(s): Mr. David Click	UCF/FSEC	US DOE	Combined Photovoltaics/Thermal (PVT) Systems (ID: 1049611)	9/28/2009	12/31/2012	\$20,002
52	PI: Mr. John Del Mar; CoPI(s): Mr. Houtan Moaveni	UCF/FSEC	Sarasota County Sustainability Office	ARRA - Solar Water Heating for Sarasota County Government (ID: 1052306)	5/3/2011	8/30/2012	\$5,622
53	PI: Mr. John Harrison; CoPI(s): Mr. David Click, Mr. John Del Mar	UCF/FSEC	Orlando Utilities Commission	Solar Technical Services to OUC (ID: 1048986)	7/30/2008	7/31/2013	\$20,329
54	PI: Mr. John Sherwin; CoPI(s): Mr. Danny Parker, Mr. John Sherwin	UCF/FSEC	US DOE	ARRA: Technical Subtopic 4.1: Improving Best Air Conditioner Technology by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler (ID: 1049806)	7/1/2010	12/31/2013	\$65,368

55	PI: Mr. Philip Fairey; CoPI(s): Mr. David Chasar, Mr. James Cummings, Mr. Eric Martin Mrs. Janet McIlvaine, Mr. Danny Parker, Mr. Robin Vieira, Mr. Charles Withers	UCF/FSEC	National Renewable Energy Lab (KNDJ04033902)	Building America Partnership for Improved Residential Construction (BA- PIRC) Task Order 2 (ID: 1052401)	7/27/2011	9/30/2012	\$50,417
56	PI: Mr. Richard Raustad	UCF/FSEC	Florida Solar Energy Center	Advanced HVAC Performance Test Facility (ID: 1054077)	7/1/2012	6/30/2015	\$837,293
57	PI: Mr. Richard Raustad	UCF/FSEC	Associated Gas Distributors of Florida	Measuring Commercial Fryer Electric and Gas Usage for the Associated Gas Distributors of Florida (ID: 1053666)	4/1/2012	3/30/2013	\$60,000
58	PI: Mr. Richard Raustad; CoPI(s): Dr. Lixing Gu	UCF/FSEC	US DOE	ARRA: Technical Topic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment (ID: 1049804)	7/1/2010	6/30/2013	\$147,512
59	PI: Mr. Robert Reedy; CoPI(s): Mr. David Click, Mr. Kristopher Davis	UCF/FSEC	US DOE	Development, Demonstration and Commercialization of Smart-Grid Inverters for Wider PV Technology Utilization (ID: 1047294)	6/25/2008	10/31/2011	\$224,023
60	PI: Mr. Robin Vieira	UCF/FSEC	State of Florida (Legislature)	Building America Task Order 2 Match from FSEC (ID: 1052906)	5/1/2011	9/30/2012	\$10,000
61	PI: Mr. Stephen Barkaszi	UCF/FSEC	Sandia National Laboratories	Task 1.1 Inverter High-Risk Component Operating Temperature Study (ID: 1052895)	8/9/2011	10/1/2012	\$20,782
62	PI: Mr. Stephen Barkaszi	UCF/FSEC	Sandia National Laboratories	Task 1.2 Design and Install Monitoring on Sanford Federal Center GSA PV System (ID: 1052952)	8/9/2011	10/1/2012	\$97,291
63	PI: Mr. Stephen Barkaszi	UCF/FSEC	Sandia National Laboratories	Task 3.1 System Long Term Exposure Study (ID: 1052954)	8/9/2011	10/1/2012	\$19,099
64	PI: Mr. Stephen Barkaszi	UCF/FSEC	Sandia National Laboratories	Task 3.2 Inverter Long Term Exposure Study (ID: 1052955)	8/9/2011	10/1/2012	\$30,530
65	PI: Mr. Stephen Barkaszi	UCF/FSEC	Sandia National Laboratories	Task 3.3 High Voltage Bias Tests (ID: 1052956)	8/9/2011	10/1/2012	\$39,091
66	PI: Mr. Stephen Barkaszi	UCF/FSEC	Sandia National Laboratories	Task 3.4 Module Testing and Certification (ID: 1052957)	8/9/2011	10/1/2012	\$29,371
67	PI: Mr. Stephen Barkaszi; CoPI(s): Mr. Joseph Walters	UCF/FSEC	US DOE	Measurements for Defining Performance Losses of Existing PV Systems (ID: 1052297)	10/14/2011	8/15/2012	\$68,628
68	PI: Mr. Stephen Barkaszi; CoPI(s): Mr. Joseph Walters	UCF/FSEC	Sandia National Laboratories	Regional Test Center (ID: 1053850)	4/25/2012	10/1/2012	\$42,628
69	PI: Mr. Stephen Barkaszi; CoPI(s): Mr. Joseph Walters	UCF/FSEC	Sandia National Laboratories	Task 3 Long-Term System Test Facility Development (FI# 12ZN4003 to project 20126103) (ID: 1054074)	8/9/2011	10/1/2012	\$65,000

70	PI: Mr. Stephen Barkaszi; CoPI(s): Mr. Joseph Walters	UCF/FSEC	US DOE	Task 3 Long-Term System Test Facility Development (ID: 1053205)	8/9/2011	10/1/2012	\$102,875
71	PI: Mrs. Janet McIlvaine; CoPI(s): Mr. David Chasar, Mr. John Sherwin	UCF/FSEC	US DOE	ARRA-Partnership for High Performance Homes (ID: 1051444)	10/1/2010	2/29/2012	\$39,938
72	PI: Mrs. Susan Schleith; CoPI(s): Mr. David Click, Ms. Mary Huggins, Colleen Kettles	UCF/FSEC	Progress Energy	SunSmart Schools E-Shelter Plus-UP (Utility Program) AKA SunSense Plus UP (ID: 1052872)	8/31/2011	2/28/2013	\$1,153,276
73	PI: Mrs. Susan Schleith; CoPI(s): Mr. David Click, Ms. Mary Huggins, Mr. William Young	UCF/FSEC	TECO Energy	SunSmart School E-Shelter Plus-UP (Utility Program) TECO Plus UP (ID: 1052905)	9/30/2011	2/28/2012	\$126,187
74	PI: Mrs. Susan Schleith; CoPI(s): Mr. William Young	UCF/FSEC	Florida Power and Light	RF: FPL SunSmart Schools DAS program (ID: 1049174)	5/1/2009	6/30/2012	\$4,454
75	PI: Ujjwala Magdum; CoPI(s): Mr. Safvat Kalaghchy	UCF/FSEC	Solar Rating & Certification Corporation	SRCC Portal Development (ID: 1051806)	4/20/2011	8/31/2012	\$60,000
76	PI: Ujjwala Magdum; CoPI(s): Mr. Safvat Kalaghchy	UCF/FSEC	Solar Rating & Certification Corporation	SRCC Portal Development (ID: 1054404)	7/1/2012	12/31/2012	\$17,413
77	ACOSTA D E	UF	US DOE	US CMS M&O Trigger Subsystem	4/30/2012	9/30/2013	\$37,620
78	ACOSTA D E	UF	US DOE	US CMS M&O Trigger Subsystem	4/30/2012	9/30/2013	\$79,380
79	ACOSTA D E	UF	US DOE	CMS Level 1 Trigger	5/29/2012	12/31/2012	\$36,454
80	ACOSTA D E	UF	US DOE	US CMS Trigger Upgrade At Fermilab	6/11/2012	12/31/2012	\$53,770
81	ACOSTA D E	UF	US DOE	US CMS Trigger Upgrade At Fermilab	6/11/2012	12/31/2012	\$97,020
82	ADAMS C M	UF	US DEPT OF COMMERCE	Economics Of Harmful Algae Bloom Literature Review	4/24/2012	10/15/2012	\$9,993
83	ALTPETER F	UF	US DOE	Engineering Hydrocarbon Biosynthesis And Storage Together With Increased Photosynthetic Efficency Into Saccharinae	2/29/2012	2/14/2013	\$371,715
84	ANDERSON T J	UF	US DOE	SEP Collaborative: Routes to Earth Abundant Kesterite Based Thin Film PV Materials	9/6/2012		\$1,900,000
85	ANDERSON T J	UF	US DOE	Information-Driven Semiconducting Materials Discovery	10/6/2011	9/21/2012	\$48,000
86	ANDERSON T J	UF	US DOE	Advanced Precursor Reaction Processing For Cu(Inga)(Ses)2 Solar Cells	1/26/2012	2/28/2013	\$162,747
87	ANDERSON T J	UF	US DOE	Routes To Rapid Synthesis Of Cugaxin1 Xse2 Absorbers	9/12/2012	9/30/2013	\$206,091
88	ANDREW J	UF	EMCORE INC	Improved Contacts For Solar Cells	3/13/2012	4/30/2013	\$5,000

				Self-Assembled Catalysts For Asymmetric			.
89	APONICK A	UF	NSF	Ring Opening Reactions	12/21/2011	1/31/2013	\$120,000
90	AVERY P R	UF	NSF	Sustaining And Extending The Open Science Grid: Science Inn Ovation On A Petascale Nationwide Facility	10/11/2011	3/31/2012	\$35,000
91	AVERY P R	UF	US DOE	High Energy Experimental And Theoretical Research	2/7/2012	6/30/2011	\$166
92	AVERY P R	UF	US DOE	Task Q: Research In High Energy Phsyics (Experimental And Therotical) Together With Quarknet Educational Outreach	7/23/2012	6/30/2013	\$136,970
93	BANEY R H	UF	US DOE	Microporous Materials For Getters Is Pressurized Water Reactor (PWR) Nuclear Fuels	12/8/2011	9/30/2012	\$6,462
94	BARTLETT R J	UF	US DOE	Super Instruction Architecture For Scalable Parallel Computations	10/4/2011	8/31/2013	\$95,534
95	BOHN K K	UF	US DEPT OF AG	Woody Biomass Harvesting In Northwest Florida	8/8/2012	9/30/2013	\$50,038
96	BORKHATARI A R R	UF	NORMANDEAU ASSOCIATES	Preconstruction Study Of Wood Storks & Other Wading Birds In The Palm Beach Wind Energy Study Area	12/8/2011	7/31/2013	\$110,000
97	BOWERS C R	UF		Application Of Parahydrogen Enhanced NMR To Heterogeneous Hydrogenation On Supported Metal Catalysts	8/16/2012	8/31/2014	\$55,000
98	BUSCHBACHE R R J	UF	MOORE, GORDON & BETTY FOU	Amazon Conservation Leadership Initiative	4/9/2012	12/3/2013	\$215,734
99	CATTAFESTA III L N	UF	GULFSTREAM AEROSPACE CORP	Anechoic Wind Tunnel Experiments Of Landing Gear Noise	12/15/2011	8/31/2011	\$30,942
100	CHASE C D	UF	HIGHLANDS ETHANOL	Dna Fingerprinting Of Pennisetum Purpureum Biomass Cultivars	3/29/2012	3/11/2013	\$74,685
101	CHEN Y	UF	US DOE	Prediction Of Thermal Transport Properties Of Materials With Microstructural Complexity	5/21/2012	7/14/2013	\$150,000
102	CHENG H P	UF	US DOE	A Computational Approach To Complex Junctions And Interfaces	2/2/2012	11/30/2012	\$180,000
103	CHENG H P	UF	NSF	Understanding And Reducing Thermal Noise Via Atomistic Simulations	6/25/2012	8/31/2014	\$105,000
104	Chung Jacob	UF	NASA	Cryogenic Storage And Transfer Line Thermal And Fluid Physics In Low To Zero Gravity (Student: Charles Cook)	10/6/2011	8/14/2012	\$30,000
105	Chung Jacob	UF	NASA	Cryogenic Storage And Transfer Line Thermal And Fluid Physics In Low To Zero Gravity (Student: Charles Cook)	8/14/2012	8/14/2013	\$30,000
106	Chung Jacob	UF	UF FOU	Hines/Progress Energy Eminent Scholar Chair	8/28/2012	8/31/2017	\$31,500
107	Chung Jacob	UF	Hinkley Center for Solid Waste Research	A Continued Research of High- Temperature Steam Gasification of Agricultural and Municipal Solid Waste	9/1/2011	2/28/2013	\$45,000
108	Erickson John, Lynn Sollenberger, Maria Silveira, and Lonnie Ingram	UF	USDA-AFRI Sustainable Bioenergy Research – Land Use Change	Direct Effects of Converting Conventional Agroecosystems to Bioenergy Cropping Systems on Carbon, Water, and Nutrient Cycling in the Southeastern U.S.A.	7/1/2012	6/30/2016	\$499,842

			1	Task T2: Research In High Energy Phsyics			l
109	FIELD R D	UF	US DOE	(Experimental And Therotical) Together With Quarknet Educational Outreach	7/23/2012	6/30/2013	\$123,264
110	FLETCHER R J	UF	US DEPT OF AG	Evaluating The Sustainability Of Bioenergy Production In Thesoutheast On The Basis Of Wildlife And Pollinator Responses	9/21/2012	8/31/2016	\$496,996
111	FORTES J A	UF	NSF	Futuregrid: An Experimental High Performance Grid Test-Bed	7/20/2012	9/30/2013	\$153,388
112	FOSSUM J G	UF	US DOE	Simulation-Based Engineering & Design Of Heterojunction Solar Cells On Thin Som Substrates	6/29/2012	8/31/2012	\$28,871
113	Franky So	UF	Wintek	Bipolar transistors driven OLED Displays	5/1/2012	4/30/13	\$1,537,666
114	FUCHS G E	UF	US DOE	Comparison Of The Single-Crystal Ni- Base Superalloys For Multi-Component IGT Vane Applications	2/29/2012	9/15/2012	\$25,000
115	FUCHS G E	UF	US DOE	Fuel Aging In Storage And Transportation: Accelerated Characterization And Performance Assessment Of The Used Nuclear	6/26/2012	9/15/2012	\$85,905
116	FUCHS G E	UF	US DOE	Fuel Aging In Storage And Transportation: Accelerated Characterization And Performance Assessment Of The Used Nuclear	8/22/2012	9/15/2013	\$90,759
117	FURIC I K	UF	US DOE	Task J: Research In High Energy Phsyics (Experimental And Theoretical) Together With Quarknet Educational Outreach	7/23/2012	6/30/2013	\$122,000
118	GILBERT R A	UF	US DOE	Bio-Diesel Cellulosic Ethanol Research Project	5/29/2012	2/28/2013	\$8,000
119	GILBERT R A	UF	US DOE	Bio-Diesel Cellulosic Ethanol Research Project	7/2/2012	2/28/2013	\$2,080
120	GILBERT R A	UF	US DOE	Discovering The Desirable Alleles To The Lignocellulosic Biomass Traits In Saccharum Germplasm Collections For	9/25/2012	9/14/2013	\$78,201
121	GOLUOGLU S	UF	US NUCLEAR REG. COM	UF NRC-10 Faculty Development	6/5/2012	4/30/2013	\$240,480
122	GUAN Y	UF	US DOE	Models And Methods For Power System Under Uncertainty	1/17/2012	9/30/2012	\$97,792
123	GUAN Y	UF	US DOE	Multi-Stage Stochastic Integer Programming For Power Grid Systems	6/6/2012	9/30/2013	\$36,000
124	GURLEY K R	UF	NSF	Hurricane Wind Load Monitoring For Coastal Infrastructure	9/5/2012	8/31/2013	\$125,044
125	HAGELIN- WEAVER H E	UF	US DOE	New Mea Materials For Improved DMFC Performance, Durability And Cost	1/5/2012	6/30/2012	\$60,312
126	HAGELIN- WEAVER H E	UF	US DOE	Solar Thermochemical Fuel Production Via A Novel Low Pressure, Magnetically Stabilized, Non-Volatile Iron Oxide	4/4/2012	12/18/2014	\$63,635
127	HAGELIN- WEAVER H E	UF	AMER CHEMICAL SOC	Optimizing Heterogeneous Hydrogenation Catalysts For Parahydrogen Enhanced Nuclear Magnetic Resonance	8/16/2012	8/31/2014	\$45,000
128	HAHN D W	UF	UF FOU	Hines/Progress Energy Eminent Scholar Chair	11/1/2011	8/31/2012	\$15,800
129	HAHN D W	UF	US DOE	Solar Thermochemical Fuel Production Via A Novel Low Pressure, Magnetically Stabilized, Non-Volatile Iron Oxide Looping	1/18/2012	12/18/2012	\$124,107

130	HAHN D W	UF	UF FOU	Hines/Progress Energy Eminent Scholar Chair	4/4/2012	8/31/2012	\$31,800
131	HIRSCHFELD P J	UF	US DOE	Theory Of Novel Superconductors	10/19/2011	8/31/2012	\$105,000
132	HOCTOR T S	UF	KRESGE FOUNDATION	Adaption To Sea Level Rise In Florida: Biological Conservation Priorities	10/17/2011	6/30/2014	\$140,236
133	INGLEY III H A	UF	US EPA	High-Temperature Steam Gasification Of Agriculture And Municipal Solid Waste And Conversion To Energy System	10/17/2011	9/30/2012	\$45,000
134	ISSA R R	UF	DEPT OF BUSINESS & PROF REGUL	Energy Conservation Features Of New Homes In Florida 2012-2013	8/9/2012	6/30/2013	\$21,542
135	James F. Preston	UF	USDA	Next generation sweet sorghums: sustainable production of feed stocks for fuels, chemicals and value-added products	5/1/2011	4/30/2015	\$653,75
136	JAMISON M A	UF	FL PUBLIC SERVICE COMMISSION	Florida Ebergy Efficiency and Conservaion Act	7/30/2012	1/9/2013	\$146,26
137	Jenshan Lin	UF	SRI	Novel Humidity Independent Wireless Hydrogen Sensors Based on Carbon Nanotube Aerogels	8/1/2012	7/31/2013	\$45,000
138	JONES J L	UF	US DOE	Enabling Self-Powered Ferroelectric Nano-Sensors: Fundamental science Of Interfacial Effects Under Extreme Conditions	10/25/2011	9/14/2012	\$62,00
139	JONES J L	UF	ADVANCED GREEN INNOVATIONS	Advanced Dielectrics For Energy Applications	2/2/2012	12/31/2013	\$229,22
140	JONES J L	UF	US DOE	Development Of Stroboscopic Techniques And Application To Phase Switching In Ferroelectrics	2/16/2012	5/31/2012	\$6,00
141	JONES P H	UF	FL PUBLIC SERVICE COMM.	Florida Energy Efficiency And Conservation Act	7/30/2012	1/9/2013	\$54,44
142	Jones P. and PURC	UF	Florida Public Service Commission	Independent Program Review of FEECA	6/12/2012	1/13/2012	\$200,70
143	JORDAN K A	UF	US DOE	Bil3 Crystals For High Energy Resolution Gamma-Ray Spectroscopy	10/10/2011	6/30/2013	\$70,71
144	JORDAN K A	UF	US DOE	Travel Cost For Educational Trip To ORNL	3/5/2012	8/30/2012	\$9,00
145	JORDAN K A	UF	US DOE	Argon-41 Monitoring Equipment For Relicensing Support At The UFTR	8/27/2012	7/23/2013	\$167,41
146	KATRITZKY A R	UF	US NAVY	Novel Energy-Rich Linear Triazenes, Nitrogen Yields And Heterocyclic N- Oxides	5/11/2012	6/30/2017	\$50,00
147	KATRITZKY A R	UF	US NAVY	Novel Energy-Rich Linear Triazenes, Nitrogen Yields and Heterocyclic N- Oxides	5/25/2012	6/30/2017	\$150,00
148	KHARGONEKA R P P	UF	US DOE	IPA Agreement For Dr. Pramod Khargonekar	9/4/2012	9/3/2013	\$258,30
149	KHARGONEKA R P P	UF	NSF	Collaborative Research: Integrating Random Energy Into the Smart Grid			\$273,00
150	KHARGONEKA R P P	UF	NSF	CPS: Synergy: Collaborative Research: Coordinated Resource Management of Cyber-Physical-Social Power Systems			\$280,000

151	KLAUSNER J F	UF	US DOE	Solar Thermochemical Fuel Production Via A Novel Low Pressure, Magnetically Stabilized, Non-Volatile Iron Oxide	1/5/2012	12/18/2014	\$1,980,728
152	KLAUSNER J F	UF	US DOE	Solar Thermochemical Fuel Production Via A Novel Low Pressure, Magnetically Stabilized, Non-Volatile Iron Oxide Looping	9/12/2012	12/18/2014	\$181,150
153	Klausner James , D. Hahn, R. Mei, J. Petrasch	UF	DOE ARPA-E	Solar thermochemical fuel production via a novel low pressure, magnetically stabilized iron looping process	12/19/2011	12/18/2014	\$2,975,920
154	KLEIMAN V D	UF	NSF	Coherent And Incoherent Energy Transfer In Conjugated Molecules	10/4/2011	9/30/2012	\$250,000
155	KLEIMAN V D	UF	US DOE	Conjugated Polyelectrolytes: Disrupted Interactions, Self- Assembled Structures And Hybrid Polymer Solar Photcopy	2/20/2012	3/14/2013	\$83,026
156	KLEIMAN V D	UF	NSF	Coherent And Incoherent Energy Transfer In Conjugated Molecules	8/31/2012	9/30/2014	\$200,000
157	LAWSON J R	UF	PROGRESS ENERGY FL	Sunsense Schools Post Secondary Program For 100 Kw Solar Array	8/6/2012	11/30/2012	\$549,693
158	LEAR JR W E	UF	US DOE	New MEA Materials For Improved DMFC Performance, Durability And Cost	1/5/2012	6/30/2012	\$60,970
159	LEAR JR W E	UF	US DOE	New MEA Materials For Improved DMFC Performance, Durability And Cost	4/23/2012	6/30/2012	\$61,199
160	LIJG	UF	SUN NUCLEAR CORP	SNC 3d Scanner	7/13/2012	7/11/2013	\$60,000
161	LI Y	UF	US DOE	Bio-Diesel Cellulosic Ethanol Research Project	7/2/2012	2/28/2013	\$12,348
162	MARTIN C R	UF	US DOE	Nanophase Extractor Development	8/20/2012	9/30/2012	\$20,000
163	MARTIN C R	UF	US DOE	Science Of Precision Multifunctional Nanostructures For Electrical Energy Storage	8/31/2012	7/31/2013	\$150,000
164	MASLOV D	UF	NSF	Materials World Network: Control Of The Electron Nuclear Interaction In Nanoelectronic Devices	6/15/2012	7/31/2013	\$85,000
165	MASTERS F J	UF	US DEPT OF HOMELAND SECURITY	Residential Roof Covering Investigation Of Wind Resistance Of Wind Resistance Of Asphalt Shingles	6/28/2012	9/30/2012	\$37,250
166	MAUPIN J A	UF	US DOE	Identification Of Proteasome Substrates Of The Haloarchaeon Halferax Volcanii	11/7/2011	7/14/2013	\$282,000
167	MEI R	UF	US DOE	Solar Thermochemical Fuel Production Via A Novel Low Pressure, Magnetically Stabilized, Non-Volatile Iron Oxide Looping	1/18/2012	12/18/2012	\$104,076
168	MERCIER D J	UF	US DOE	Sandia Natl Labs Renovation Of Nuclear Science Building	6/15/2012	11/25/2015	\$461,705
169	MIDDELKOOP T	UF	NEW HOPE POWER CO.	Proposal For An Energy Audit Of Florida Crystals Co-Gen FACII	10/18/2011	4/30/2012	\$270
170	MITSELMAKH ER G	UF	US DOE	LPC Fellowships In Physics	12/20/2011	1/31/2013	\$20,000
171	MITSELMAKH ER G	UF	US DOE	LPC Fellowships In Physics	3/29/2012	12/31/2012	\$60,135
172	MITSELMAKH ER G	UF	US DOE	US CMS EMU At Fermilab	5/10/2012	9/30/2013	\$37,630
173	MITSELMAKH ER G	UF	US DOE	US CMS EMU At Fermilab	5/10/2012	9/30/2013	\$117,370

			1	1			1
174	MITSELMAKH ER G	UF	US DOE	Task P: Research In High Energy Physics (Experimental And Theoretical) Together With Quarknet Educational Outreach	7/23/2012	6/30/2013	\$1,192,265
175	MOGHADDAM S	UF	US DOE	Absorption Water Heater Development Project	9/1/2012	8/19/2014	\$90,000
176	MOHSENI K	UF	NSF	Digitized Heat Transfer: A New Paradigm For Thermal Management Of Compact Micro Systems	12/20/2011	1/31/2013	\$65,056
177	MORGAN K T	UF	FL DEPT OF AG AND CONSUMER SER	Enhanced Agricultural Irrigation Water Conservation Tools For Use With Mobile Communication Devices	6/13/2012	6/30/2012	\$35,000
178	OBONYO E A	UF	NSF	Collaborative Research: Resilient And Sustainable Engineered fiber-Reinforced Earthen Masonry For High Wind Regions	10/10/2011	8/31/2014	\$85,000
179	ORAZEM M E	UF	US DOE	Impedance Investigation Of Lithium Batteries	1/18/2012	9/30/2012	\$45,000
180	PEIR J	UF	INTEL CORP	Memory Hierarchy Studies On Many-Core CMPS With Large On- Die Storage	6/7/2012	5/31/2013	\$70,000
181	Peter Gary	UF	DOE	Commercial Production of Terpene Biofuels in Pine	1/11/2012	1/10/2015	\$2,612,707
182	Peter Gary, Matias Kirst	UF	USDA	Advanced Pine Breeding through Association Genetics and Biotechnology	10/1/2009	9/30/2013	\$150,000
183	Peter Gary, Matias Kirst	UF	USDA/DOE	Mechanism of Carbon Partitioning Regulation by cpg13 in the Bioenergy Woody Crop Populus	10/1/2009	9/30/2012	\$200,000
184	Peter Gary, Tim Martin	UF	USDA	Integrating Research, Education and Extension for Enhancing Southern Pine Climate Change	3/1/2011	3/10/2016	\$4,000,000
185	Peter Gary, Tim Martin	UF	NSF	Center for Advanced Forest Systems	8/15/2011	8/14/2016	\$50,000
186	PHILLPOT S R	UF	US DOE	The Consortium For Advanced Simulation Of Light-Water Reactors (CASL)	10/6/2011	3/31/2012	\$16,576
187	PHILLPOT S R	UF	US NUCLEAR REG. COM	UF NRC-10 Faculty Development	2/29/2012	4/30/2013	\$62,689
188	PHILLPOT S R	UF	US NUCLEAR REG. COM	NRC Fellowship Program	3/26/2012	7/31/2013	\$187,801
189	PHILLPOT S R	UF	US NUCLEAR REG. COM	UF NRC-10 Faculty Development	6/12/2012	4/30/2013	\$2,438
190	PHILLPOT S R	UF	US NUCLEAR REG. COM	UF NRC Faculty Development Program	7/11/2012	8/15/2012	\$15,861
191	PHILLPOT S R	UF	US DOE	The Consortium For Advanced Simulation Of Light-Water Reactors (CASL)	9/19/2012	9/30/2013	\$110,000
192	POWERS K W	UF	US DOE	Microporous Materials For Getters Is Pressurized Water Reactor (PWR) Nuclear Feuls	12/8/2011	9/30/2012	\$6,913
193	POWERS K W	UF	G4 SYNERGETICS CORP.	Powder Characterization And Beneficiation For Nickel Metal Hydride Battery Manufacturing	5/4/2012	2/28/2013	\$28,000
194	PREVATT D O	UF	US DEPT OF HOMELAND SECURITY	Measurement And Modeling Of Wind Field And Wind Loads On Residential Housing Planning Project	11/2/2011	6/30/2012	\$46,233
				103			

	1		1	I	1		
195	RAMOND P	UF	US DOE	Task T1: Research In High Energy Phsyics (Experimental And Therotical) Together With Quarknet Educational Outreach	7/23/2012	6/30/2013	\$215,000
196	RANKA S	UF	NSF	CSR: Medium: Collaborative Research: Gridpac: A Resource Management System For Energy And Performance Optimization	8/1/2012	8/31/2013	\$84,975
197	RAY H	UF	US DOE	Task P3: Research In High Energy Phsyics (Experimental And Therotical) Together With Quarknet Educational Outreach	7/23/2012	6/30/2013	\$150,000
198	RICHARD J P	UF	CSX TRANS.	Optimization-Based Decision Support System For Coal/Bulk Monthly Reservations Planning	2/6/2012	12/31/2012	\$48,000
199	ROCKWOOD D L	UF	FL FORESTRY ASSOC.	Demonstration Of Fast Growing Trees Bioenergy Farms In Florida For Mosiac - Phase 3	3/29/2012	12/21/2012	\$17,200
200	SANKAR B V	UF	NASA	Structurally Integrated Thermal Protection Systems For Space Vehicles	10/6/2011	12/31/2012	\$25,000
201	SANSALONE J J	UF	CITY OF GAINESVILLE	Demonstration Of Hydrologic Thermal And Physical-Chemical Modification By An Infrastructure-Contrained "Biodetention"	10/25/2011	10/9/2012	\$85,837
202	SCHANZE K S	UF	US DOE	Conjugated Polyelectrolytes: Disrupted Interactions, Self- Assembled Structures And Hybrid Polymer Solar Photcopy	2/14/2012	3/14/2012	\$44,494
203	SCHANZE K S	UF	US DOE	Conjugated Polyelectrolytes: Disrupted Interactions, Self- Assembled Structures And Hybrid Polymer Solar Photcopy	2/20/2012	3/14/2013	\$266,974
204	SCHANZE K S	UF	US DOE	Solar Fuels And Next Generation Photovoltaics - EFRC	8/8/2012	10/31/2012	
205	SCHANZE K S	UF	US DOE	Solar Fuels And Next Generation Photovoltaics - EFRC	8/8/2012	10/31/2012	
206	SCHUBRING D	UF	US DOE	DOE Fellowships/Scholarships 2012 - Paul Johns Scholarship	6/21/2012	6/7/2013	\$5,000
207	SCHUBRING D	UF	US DOE	DOE Fellowships/Scholarships 2012 - Aaron Holzaepfel Scholarship	6/21/2012	6/7/2013	\$5,000
208	SCHUBRING D	UF	US DOE	DOE Fellowships/Scholarships 2012 - Kyle Ramey Scholarship	6/21/2012	6/7/2013	\$5,000
209	SCHUUR T	UF	US DOE	From Community Structure To Functions: Metagenomics-Enabled Predictive Understanding Of Temperature Sensitivity Of Soil	6/18/2012	7/14/2013	\$140,056
210	SCHUUR T	UF	US DOE	Effects Of Warming The Deep Soil And Permafrost On Ecosystem Carbon Balance In Alaskan Tundra: A Coupled Measurement And	9/25/2012	9/14/2013	\$236,006
211	SCHUUR T	UF	US DOE	Effects Of Warming The Deep Soil And Permafrost On Ecosystem Carbon Balance In Alaskan Tundra: A Coupled Measurement And	9/25/2012	9/14/2013	\$98,882

212	SHERIF S A	UF	US DOE	Reducing Industrial Energy Intensity In The Southeast	6/6/2012	4/30/2013	\$165,000
213	SHI J J	UF	US DOE	Energy Efficient Housing Research Partnerships - Field Data Supporting Retrolift Analytical Research	8/21/2012	8/31/2012	\$259,180
214	SHUKLA S	UF	WATER MGMT DISTRICTS	Water Use Of Two Biofuel Crops In Southwest Florida	10/6/2011	9/30/2012	\$60,000
215	SHUKLA S	UF	WATER MGMT DISTRICTS	Evaluation Of Bed Geometry For Water Conservation On Drip Irrigated Tomatoes In Southwest Florida	5/17/2012	6/30/2016	\$200,000
216	SINGH R K	UF	US DOE	Defect Free, Ultra-Rapid Thinning/Polishing Of Diamond Crystal Radiator Targets (20 Micro-M) For Highly Linearly Polariz	2/29/2012	9/18/2012	\$50,012
217	SINGH R K	UF	US DOE	Low Cost, Scalable Manufacturing Of Microlens Engineered Substrates (Miles) For Enhanced Light Extraction In OLED	2/29/2012	8/14/2012	\$50,012
218	SINGH R K	UF	US DOE	Device	8/10/2012	8/14/2013	\$50,012
219	SINGH R K	UF	US DOE	Defect Free, Ultra-Rapid Thinning/Polishing Of Diamond Crystal Radiator Targets (20 Micro-M) For Highly Linearly Polariz	8/14/2012	8/14/2013	\$50,012
220	SINNOTT S B	UF	US DOE	Low Cost, Scalable Manufacturing Of Microlens Engineered Substrates (Miles) For Enhanced Light Extraction In OLED Device	10/13/2011	10/1/2013	\$50,000
221	SINNOTT S B	UF	US DOE	Computational Study Of Fission Product Clustering In Nuclear Fuels	8/21/2012	7/31/2013	\$86,191
222	SKVARCH E A	UF	US DEPT OF AG	Computational Catalysis And Atomic- Level Synthesis Of Materials: Building Effective Catalysts From First Principles	8/6/2012	9/30/2014	\$50,861
223	So Franky	UF	US DOE	Adoption Of 'Solid Tarp' Soil Solarization By Cut-Flower Growers	2/15/2012	12/31/2012	\$260,000
224	So Franky	UF	US DOE	High Efficiency Organic Light Emitting Devices For Lighting	3/15/2012	5/31/2013	\$160,000
225	So Franky	UF	SESTAR TECH.	Luminescence In Conjugated Molecular Materials Under Sub-Bandgap Excitations	3/27/2012	3/14/2013	\$112,217
226	So Franky	UF	US DOE	High Efficiency Black Polymer Solar Cells	8/14/2012	8/14/2013	\$75,014
227	STEWART G R	UF	US DOE	Low Cost, Scalable Manufacturing Of Microlens Engineered Substrates (Miles) For Enhanced Light Extraction In OLED Device	12/5/2011	11/30/2012	\$150,000

228	SUBHASH G	UF	US DOE	Fe Pnictide And F-Electron Novel Materials: Magnetism, Superconductivity, And Quantum Criticality	8/16/2012	8/15/2015	\$393,061
229	TANNER D B	UF	US DOE	Development Of Innovative Accident Tolerant High Thermal Conductivity Uo2- Diamond Composite Fuel Pellets	6/5/2012	5/14/2013	\$43,793
230	TANNER D B	UF	US DOE	Time-Resolved Far-Infrared Experiments: Implications For Nanotechnology	7/23/2012	6/30/2013	\$83,449
231	TANNER D B	UF	US DOE	Task N: Research In High Energy Phsyics (Experimental And Therotical) Together With Quarknet Educational Outreach	7/23/2012	6/30/2013	\$11,550
232	THORON A C	UF	US DOE	Task N: Research In High Energy Phsyics (Experimental And Therotical) Together With Quarknet Educational Outreach	2/10/2012	2/28/2013	\$94,938
233	TULENKO J S	UF	US DOE	Bio-Diesel Cellulosic Ethanol Research Project	12/8/2011	9/30/2012	\$11,625
234	TULENKO J S	UF	US DOE	Microporous Materials For Getters Is Pressurized Water Reactor (PWR) Nuclear Fuels.	6/26/2012	9/15/2012	\$46,452
235	TULENKO J S	UF	US DOE	Fuel Aging In Storage And Transportation: Accelerated Characterization And Performance Assessment Of The Used Nuclear	8/16/2012	8/15/2015	\$406,939
236	TULENKO J S	UF	US DOE	Development Of Innovative Accident Tolerant High Thermal Conductivity Uo2- Diamond Composite Fuel Pellets	8/22/2012	9/15/2013	\$48,049
237	VEIGE A S	UF	NSF	Fuel Aging In Storage And Transportation: Accelerated Characterization And Performance Assessment Of The Used Nuclear	6/4/2012	3/31/2013	\$12,396
238	VERMERRIS W	UF	US DEPT OF AG	New Group Vi Catalysts For Nitrile- Akalyne Cross Metathesis (NACM): Design, Synth And Appl Of Trianionic Pincer Ligands	10/3/2011	7/5/2012	\$19,583
239	VERMERRIS W	UF	US DEPT OF AG	Improved Bioenergy Sorghums For The Southeastern US	1/10/2012	4/30/2015	\$320,650
240	VERMERRIS W	UF	US DEPT OF AG	Next-Generation Sweet Sorghums - Sustainable Production Of Feedstocks For Fuels, Chemicals And Value-Added Products	5/7/2012	4/30/2015	\$90,123
241	VERMERRIS W	UF	US DEPT OF AG	Next-Generation Sweet Sorghums - Sustainable Production Of Feedstocks For Fuels, Chemicals And Value-Added Products	8/22/2012	8/31/2013	\$80,397
242	VERMERRIS W	UF	US DEPT OF AG	Improved Bioenergy Sorghums For The Southeastern Us	8/23/2012	4/30/2015	\$1,357,484
243	WANG J	UF	US DOE	Next-Generation Sweet Sorghums - Sustainable Production Of Feedstocks For Fuels, Chemicals And Value-Added Products	9/25/2012	9/14/2013	\$233,033

244	WEAVER J F	UF	US DOE	Discovering The Desirable Alleles To The Lignocellulosic Biomass Traits In Saccharum Germplasm Collections For	9/1/2012	8/31/2013	\$200,000
245	WONG T F	UF	NSF	Growth And Reactivity Of Oxide Phases On Crystaline Pd And Pt Surfaces	8/31/2012	6/30/2013	\$45,000
246	YANG Y	UF	US DOE	STTR:Phase I:Enhanced Spectral Efficiency Through Adaptive Utilization Of Fragmented Spectrum	2/10/2012	9/30/2014	\$20,000
247	YANG Y	UF	US DOE	Microstructural Analysis Of Stainless Steels And Nickel Alloys For LWR Applications	6/26/2012	9/15/2012	\$97,643
248	YANG Y	UF	US DOE	Fuel Aging In Storage And Transportation: Accelerated Characterization And Performance Assessment Of The Used Nuclear	8/22/2012	9/15/2013	\$101,192
249	YANG Y	UF	US DOE	Fuel Aging In Storage And Transportation: Accelerated Characterization And Performance Assessment Of The Used Nuclear	9/18/2012	9/30/2014	\$25,000
250	YOST R A	UF	US DOE	Microstructural Analysis Of Stainless Steels And Nickel Alloys For LWR Applications	7/26/2012	8/31/2012	\$30,000
251	ZIEGLER K J	UF	US AIR FORCE	Integrated Nondestructive Spatial And Chemical Analysis Of Lignocellulosic Materials During Pretreatment And Bioconv	10/28/2011	6/14/2012	\$33,500
252	ZIEGLER K J	UF	NSF	Ultra-High Surface Area Architectures For Thermal Energy Storage	7/17/2012	7/31/2013	\$3,125
253	ZIEGLER K J	UF	NSF	Modeling The Charge Transport Of Nanowire-Based Dye-Sensitizing Solar Cells	7/17/2012	7/31/2013	\$1,500
254	ZIEGLER K J	UF	NSF	Modeling The Charge Transport Of Nanowire-Based Dye-Sensitizing Solar Cells	9/6/2012	7/31/2013	\$106,152
255	ZWICK P D	UF	KRESGE FOUNDATION	Modeling The Charge Transport Of Nanowire-Based Dye-Sensitizing Solar Cells	6/29/2012	2/15/2014	\$27,500
256	ZWICK P D	UF	KRESGE FOUNDATION	Adaption To Sea Level Rise In Florida: Biological Conservation Priorities	7/18/2012	2/15/2014	\$5,500
257	Jamison Mark	UF/PURC	NSF	SEP Collaborative: Routes to Earth Abundant Kesterite Based Thin Film PV Materials	9/6/2012		\$500,000
258	Jamison Mark, Ted Kury	UF/PURC	FPSC	Energy Issues and Fuels Training for the Staff of the Florida Public Service Commission	1/31/2012	6/30/2012	\$25,000
259	Don Morel	USF	NSF	Developing the Path Toward Realizing the Full Potential of II-VI Based Photovoltaic Materials	8/1/2010	7/3/2013	\$209,373
260	Don Morel/F. Christos S	USF	US DOE	Development of High Electronic Quality of DcTe Fls for 1 Volt VOC DcTe Cells	9/1/2011	2/28/2013	\$415,618
261	Elias Stefanakos	USF	US DOE	Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation	8/1/2010	7/31/2014	\$769,286

			1				
262	Elias Stefanakos/Yogi Goswami	USF	UCF	Design and Development of an Advanced Hydrogen Storage System using Novel materials	12/1/2010	12/31/2012	\$248,000
263	Kuhn,John Norbert	USF	US DOE	Advanced Catalyst Characterization and Mechanisms During	9/21/2010	9/20/2013	\$14,994
264	Sarina Ergas	USF	NSF	PIRE: Context Sensitive Implementation of Synergistic Water-Energy Systems,			\$3,912,276
265	Sarina Ergas	USF	NSF	REU Site: Tampa Environmental Interdisciplinary Research			\$392,000
266	Sarina Ergas	USF	European Commission	BioWET—Advanced Biological Waste-to- Energy Technologies,			\$330,000
267	Sarina Ergas	USF	NASA	Green Aviation Fuels from Microalgae, Collaboration (with NASA Glenn Research Center.)			\$121,500
268	Sarina Ergas	USF	Fulbright Fellowship	Examining the Use of Algal Photobioreactor Production Systems for the Dual Purpose of Bioremediation and Biofuel Production under Different Climatic Conditions (for 1-year study at the Life Sciences University, Oslo Norway.)			
269	Yogi Goswami	USF	ISES	Solar Energy Journal Management and Editing	1/1/2012	12/31/2012	\$46,463
270	Yogi Goswami	USF	Florida Aquaculture Review Council	Removal of Off-Flavor Compounds in Aquaculture Food Products: Optimizing New Techniques for Sustainable Aquaculture Systems	7/1/2012	6/30/2012	\$114,714
271	Yogi Goswami/ Elias Stefanakos	USF	E-ON International	Innovative Latent Thermal Energy Storage System for Concentrating Solar Power Plants	1/1/2011	12/31/2013	\$429,467
272	Yogi Goswami/Elias Stefanakos	USF	US DOE	Development of a Low Cost Thermal Energy Storage System Using Phase Change Materials with Enhanced Radiation Heat Transfer (Adv. Research Proj. Agcy-Energy)	12/5/2011	12/4/2014	\$782,379
273	Zhixin Miao	USF	Progress Energy Florida, Inc.	Smart Grid Functionality of PV Battery Systems	12/7/2011	3/30/2013	\$81,000
274	Franky So, John Reynolds and Frederick Krebs		Office of Naval Research	Materials and Devices compatible with high volume roll-to-roll manufacturing of polymer solar cells	Jan, 2011	Dec, 2013	\$750,000

3. <u>Publications by FESC Faculty</u>

During Oct. 1, 2011 to Sep 30, 2012 Period

(Back to top)

Total # of Publications: 242

#	University	Publications				
1	FAU	Mark Bowren; The Software Framework for Prognostic Health Monitoring of Turbine System in Ocean Based Energy Generation; Master's Thesis, Florida Atlantic University; Graduation August 2012				
2	FAU	Reena Ursula Friedel ; "Asset Identification Using Image Descriptors"; Masters Thesis, Florida Atlantic University; Graduation August 2012				
3	FAU	Renee Christina Lippert, "Numerical Models to Simulate Underwater Turbine Noise Levels"; Master's Thesis, Florida Atlantic University; Graduation August 2012				
4	FAMU	A. K. F. Haque, M. A. Uddin, M. Shahjahan, M. R Talukder, A. K. Basak and B. C. Saha, "Electron impact inner-shell ionization of atoms", in <i>Advances in Quantum Chemistry</i> , Vol. 61, 309-373 (2011).				
5	FAMU	A. K. F. Haque, M. R. Talukder, M. Shahjahan, M. A. Uddin, A. K. Basak and B. C. Saha, "An extended empirical formula for inner-shell ionization of atoms", J. Phys. B43, 115201 (2011).				
6	FAMU	C. Saha and L. B. Zhao, "H and He atoms in strong magnetic fields", Abst. XXVII PEAC, Belfast, July, 27 – Aug2, (2011).				
7	FAMU	B. C. Saha, "Inner shell ionization of atoms (Z=6 to 92) by electrons, 42 nd DAMOP, Atlanta, June134-17, 2011.				
8	FAMU	Bidhan C. Saha, "Collisions of fully and partially stripped ions with H_2 al low energies", in <i>Atomic Structure and Collision processes</i> (edt. Man Mohan) Narosa Pub. House (2011).				
9	FAMU	C. Weatherford, Kalayu Belay, Gennady Gutsev, "Theoretical and Experimental Studies of Fullerite Modified by Oxidation, Intercalation, and Radiation," 2011 Florida Energy Systems Consortium Summit, University of Florida Reitz Union, Gainesville, Florida, September 28, 2011.				
10	FAMU	D. C. Joseph and B. C. Saha, "Electron capture cross sections by O ⁺ from atomic He", Abst XXVI IEPEAC, Kalamazoo, MI, July 22, 2009.				
11	FAMU	D. C. Joseph and B. C. Saha, "State-selective charge exchange in slow collisions of Si ³⁺ ions with H atoms: A molecular state close coupling treatment", Abst. XXVII ICPEAC, Belfast, July22 –Aug 2, (2011).				
12	FAMU	D. C. Joseph, E. Quashie and B. C. Saha, "Charge exchange cross sections in slow collisions of Si ³⁺ with Hydrogen atom", 42 nd DAMOP, Atlanta, June 13-17, 2011.				
13	FAMU	D. C. Joseph, J. P. Gu and B. C. Saha, "State selective charge-transfer in slow collisions of Si ³⁺ with H", Phys. Rev. A (under consideration) (2011).				

14	FAMU	Daniel Gebremedhin and Charles A. Weatherford, "Two-Range Addition Theorem for Coulomb Sturmians", <u>Progress in Theoretical Chemistry and Physics B22</u> , 71-81, P. E. Hoggan, E.J. Brändas, J. Maruani, P. Piecuch, and G. Delgado-Barrio, editors, Springer, Dordretch (2011).
15	FAMU	G. L. Gutsev, K. G. Belay, C. A. Weatherford, V. N. Vasilets, E. M. Anokhin, A. V. Maksimychev, O. V. Val'ba, V. M. Martynenko, S. A. Baskakov, E. S. Leskova, and Y. M. Shulga "Dimerization of Defect Fullerenes and the Orientational Phase Transition in Oxidized C ₆₀ Fullerite," Journal of Nanoscience and Nanotechnology 11 , 1887-1896 (2011).
16	FAMU	G.L. Gutsev, C.A. Weatherford, K. Pradhan, and P. Jena, "Density Functional Study of Neutral and Anionic AlO_n and ScO_n with High Oxygen Content," Journal of Computational Chemistry, 32 , 2974-2982 (2011).
17	FAMU	J.L. Abot, A. Song, M.J. Schulz, V.N. Shanov, K. Belay, Y. Abere, B. Place, and C. Weatherford, "On the Development of Integrated Strain Sensors for Polymers and Composite Materials", Proceedings of the 2 nd Joint US-Canada Conference on Composites, September 26-28, 2011, Montreal, Quebec, Canada.
18	FAMU	K. Pradhan, G. L. Gutsev, C. A. Weatherford, P. Jena, "A systematic study of neutral and charged 3d-metal trioxides and tetraoxides", Journal of Chemical Physics 134, 144305-1-10 (2011).
19	FAMU	L. B. Zhao, B. C. Saha and M. Du, "Circular Rydberg states of atomic hydrogen in an arbitrary magnetic field", 42 nd DAMOP, Atlanta, June13-17 (2011).
20	FAMU	M. A. R. Potoary, M. Alfaz Uddin, A. K. F. Haque, M. Shahjahan, A. K. Basak and B. C. Saha, "Electron impact ionization in K-, L-, and M- shell of atomic targets", Int. J. Qu. Chem, 111 , 923 (2011).
21	FAMU	Nicolais. L. Guevera and Bidhan. C. Saha, "Collisions of C^{6+} with atomic and molecular hydrogen", Phys. Rev. A (under consideration) (2011).
22	FAMU	P. Karamanis, C. Pouchan, C.A. Weatherford, G.L. Gutsev, "Evolution of Properties in Prolate (GaAs)n Clusters", Journal of Physical Chemistry C, 115 , 97-107 (2011).
23	FAU	A. Agarwal, M. Browen, I. Cardei, B. Alhalabi, T. Khoshgoftaar, P. Beaujean, G. Alsenas, H.P. Hanson;"Software System Acrchitecture for Prognostic Health Monitoring of Ocean Based Power Generation"; Proceedings, The 13th IEEE International High Assurance Systems Engineering Symposium, Boca Raton, FL; 11/18/2011
24	FAU	A.E.S. Duerr, M.R. Dhanak, and J.H. Van Zwieten; "Utilizing the Hybrid Coordinate Ocean Model Data for the Assessment of Florida Current's Hydrokinetic Renewable Energy Resource"; Marine Technology Society Journal, in Press, Accepted September 12, 2012; Sep 2012
25	FAU	Alana Smentek-Duerr; A Hydrokinetic Resource Assessment of the Florida Current.; Ph.D. Thesis, Florida Atlantic University; Graduation August 2012
26	FAU	H.P. Hanson (Contributing Author);Offshore Resource Assessment and Design Conditions: A Data Requirements and Gaps Analysis for Offshore Renewable Energy Systems; U.S. Department of Energy Wind & Water Power Program, Washington, DC; Jan 2012
27	FAU	H.P. Hanson, A.E. Smentek-Duerr & J.H. VanZwieten, Jr.,;Variability in the Florida Current: Implications for Power Generation; Proceedings, World Renewable Energy Forum 2012, Denver, CO; 5/12/2012
28	FAU	H.P. Hanson; Hydrokinetic energy in the Sunshine State: Challenges of Florida's unique renewable resource; Technology & Innovation Proceedings of the American Society of Inventors (in press); July 2012

29	FAU	J.H. VanZwieten, N. Vanrietvelde, and B. Hacker; "Numerical simulation of an experimental ocean current turbine"; Journal of Oceanic Engineering, in Press, Accepted September 07, 2012, no. JOE.2012.2218891; Sep 2012
30	FAU	Lewis, A., et al. (Including H.P. Hanson);2011: Ocean Energy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seybroth, PI Matschoss, S. Kadner, T. ZwickelP. Eickemeier, G. Hansen, S. Schlomer, C. von Stechow (eds.)); Cambridge University Press, Cambridge, United Kingdom and New York, USA; Dec 2011
31	FAU	M. Borghi, F. Kolawole, S. Gangadharan, A. Engblom, J. VanZwieten, G. Alsenas, W. Baxley, S. Ravenna (2012); "Design, fabrication and installation of a hydrodynamic rotor for a small-scale experimental ocean current turbine"; Proceedings of the IEEE SoutheastCon, Orlando, Florida, March 15-18, no. SECon.2012.6196973; March 2012
32	FAU	Matthew Young ;"Design and Analysis of an Ocean Current Turbine Performance Assessment System" ; Masters Thesis, Florida Atlantic University
33	FAU	William Valentine ;Design of a Hydrodynamic Testing Facility for Gulf Stream Ocean Current Turbines.; Master's Thesis, Florida Atlantic University; Graduation August 2012
34	FSU	Abichou, T., Mahieu, K., Chanton, J., Romdhane, M., Mansouri, I., "Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions", Waste Management, v 31, n 5, p 978-986, May 2011
35	FSU	Balathandayuthapani, S., Edrington, C., Henry, S., Cao, J., "Analysis and control of a photovoltaic system: Application to a high-penetration case study." IEEE Systems Journal, v 6, n 2, p 213-219, 2012
36	FSU	Balathandayuthapani,S., Edrington, C., Henry, S., Cao, J., "Analysis and control of a photovoltaic system: Application to a high-penetration case study" v 6, n 2, p 213-219, 2012
37	FSU	Brusco, M., "Emergent clustering methods for empirical OM research", v 30, n 6, p 454-466, September 2012
38	FSU	Brusco, M., Steinley, D., Cradit, D., Singh, R., "Emergent clustering methods for empirical OM research", v 30, n 6, p 454-466, September 2012
39	FSU	Chung, I., Liu, W., Cartes, D., Moon, I., "Control parameter optimization for multiple distributed generators in a microgrid using particle swarm optimization." European Transactions on Electrical Power, v 21, n 2, p 1200-1216, March 2011
40	FSU	Hasanzadeh, A., Edrington, C., Mokhtari, H., "Optimal tuning of linear controllers for power electronics/power systems applications." Electric Power Systems Research, v 81, n 12, p 2188-2197, December 2011
41	FSU	Johnson, A., Merilis, G., Hastings, J., Palmer, E., Fitts, J., Chidambaram, D., "Nanotechnology and microbial electrochemistry for environmental remediation." ECS Transactions, v 33, n 38, p 103-112, 2011, Nanotechnology (General) - 218th ECS Meeting
42	FSU	Kim, T., Vodyakho, O., Yang, J., "Fuel cell hybrid electric scooter", IEEE Industry Applications Magazine, v 17, n 2, p 25-31, 2011
43	FSU	Liu, L., Li, H., Zhao, Y., He, X., Shen, J., "1 MHz cascaded Z-source inverters for scalable grid-interactive photovoltaic (PV) applications using GaN device.", IEEE Energy Conversion Congress and Exposition: Energy Conversion Innovation for a Clean Energy Future, ECCE 2011, Proceedings, p 2738-2745, 2011

44	FSU	Liu, W., Liu, L., Chung, I., Cartes, D., Zhang, W., "Modeling and detecting the stator winding fault of permanent magnet synchronous motors" Simulation Modelling Practice and Theory, v 27, p 1-16, September 2012
45	FSU	Uzun, A., Hussaini, M., "Some issues in large-eddy simulations for chevron nozzle jet flows", v 28, n 2, p 246-258, March-April 2012
46	FSU	Vodyakho, O., Steurer, M., Edrington, C., Fleming, F., "An induction machine emulator for high-power applications utilizing advanced simulation tools with graphical user interfaces", IEEE Transactions on Energy Conversion, v 27, n 1, p 160-172, March 2012
47	UCF	C. Huang, W. Yao, A. T-Raissi, N. Muradov, "Development of efficient photoreactors for solar hydrogen production", Solar Energy, 85(1), 19-27, 2011.
48	UCF	A. Amirahmadi, H. Hu, A. Grishina, F. Chen, J. Shen and I. Batarseh, "Hybrid control of bcm soft-switching three phase micro-inverter," in Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, 2012, pp. 4690-4695.
49	UCF	A. Grishina, H. Hu, D. Zhang, A. Amirahmadi, J. Shen and I. Batarseh, "A new quasi resonant DC link for single phase micro inverter, " in Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, 2012, pp. 4690-4695.
50	UCF	A. Gujar, J. Baik, N. Garceau, N. Muradov, A. T-Raissi, "A process for the production of liquid hydrocarbons from pinewood charcoal", Submitted to <u>Energy & Fuels</u> , 2012.
51	UCF	A. Gujar, J. Baik, N. Garceau, N. Muradov, A. T-Raissi, "Oxygen-blown gasification of pine charcoal in a top-lit downdraft moving-hearth gasifier", Submitted to Fuel, 2012.
52	UCF	B. Fidalgo, N. Muradov, J. Menéndez, "Effect of H_2S on carbon-catalyzed methane decomposition and CO_2 reforming", submitted to Intern. J. of Hydrogen Energy, 2012
53	UCF	D. Beal, J. McIlvaine, K. Fonorow, and E. Martin, Building America Measure Guideline: Summary of Interior Ducts in New Construction, Including an Efficient, Affordable Method to Install Fur-Down Interior Ducts, U.S. Department of Energy, Office of Scientific and Technical Information, Oakridge, TN, November 2011. Peer reviewed publication.
54	UCF	F. Xiang, H. Haibing, Z. J. Shen and I. Batarseh, "Operation Mode Analysis and Peak Gain Approximation of the LLC Resonant Converter," Power Electronics, IEEE Transactions on, vol. 27, pp. 1985-1995, 2012.
55	UCF	H. Hu, X. Fang, Q. Zhang, Z. J. Shen, and Issa Batarseh, "Optimal Design Considerations for a Modified LLC Converter with Wide Input Voltage Range Capability Suitable for PV Applications," in Proc. of the 3rd IEEE Energy Conversion Congress and Expo ECCE2011), pp. 3096-3103, September 2011, Phoenix, Arizona, USA.
56	UCF	J. Cummings, C. Withers, Jr., "Envelope Thermal Failures Due to Wind Washing in Two- Story Homes", Peer reviewed paper for Building Enclosure Science and Technology (BEST) 3, Conference Atlanta, GA. April 2-4, 2012.
57	UCF	K. Zhang, S. Luo, J. Breen, S. Lin, T. Wu, Z. J. Shen, and Issa Batarseh, "Analysis and Design of Dynamic Voltage Regulation in Multiphase Buck Converter," in Proc. of the 27th Annual IEEE Applied Power Electronics Conference (APEC), Feb 2012, Orlando, Florida.

	1	
58	UCF	L. Gu, "Advancement of Energyplus and Its Coupling with Champs-Whole Building," Proceedings of CHAMPS 2011: The 8th International Forum and Workshop on Combined Heat, Air, Moisture and Pollutant Simulations March 20-22, 2011 Nanjing, China, 2011.
59	UCF	1. Gu, L, R. Raustad, "Investigate peak demand reduction strategies in a large office building using EnergyPlus", The 7th International Symposium on Heating, Ventilating and Air Conditioning, Shanghai, China, Nov. 7-9, 2011.
60	UCF	L. Gu, R. Raustad, "Short-Term Curtailment of HVAC Loads", ASHRAE Transactions, SA-12-(RP-1390), 2012.
61	UCF	L. Mao, A. T-Raissi, C. Huang, N. Muradov, "Thermal decomposition of $(NH_4)_2SO_4$ in presence of Mn_3O_4 ", Intern. J. of Hydrogen Energy, 36, 5822-5827, 2011.
62	UCF	M. Oztek, M. Hampton, D. Slattery, S. Loucks, "Hydrogen storage with hetero porphyrin aggregates" International Journal of Hydrogen Energy, 36 670 – 6710, 2011.
63	UCF	M. Rodgers, C. Huang, A. Gujar, Liquid fuel from waste plastics, submitted to Progress in Energy and Combustion Science, 2011.
64	UCF	M. Rodgers, L. Bonville, D. Slattery, "Evaluation of the Durability of Polymer Electrolyte Membranes in Fuel Cells Containing Pt/C and Pt-Co/C Catalysts under Accelerated Testing", Electrochemical Society Transactions, 41(1) 1461, 2011.
65	UCF	M. Rodgers, L. Bonville, H. Kunz, D. Slattery, J. Fenton, "Defining the correlation between membrane/MEA degradation rate from accelerated testing and lifetime", accepted in Chemical Reviews, 2012.
66	UCF	M. Rodgers, N. Mohajeri, L. Bonville, D. Slattery, "Accelerated testing of polymer electrolyte membranes in fuel cells containing Pt/C and PtCo/C catalysts", Journal of the Electrochemical Society, 159, B564, 2012.
67	UCF	M. Rodgers, P. Brooker, N. Mohajeri, L. Bonville, H. Kunz, D. Slattery, J. Fenton, "Verification of the correlation between membrane/MEA degradation rate from accelerated and lifetime testing", accepted in J. of the Electrochemical Society, 2012.
68	UCF	M. Rodgers, P. Brooker, N. Mohajeri, L. Bonville, R. Kunz, D. Slattery, J. Fenton, "Comparison of Proton Exchange Membranes Degradation Rates Between Accelerated and Performance Tests", Journal of the Electrochemical Society, in press.
69	UCF	M. Tanniru, D. Slattery, F. Ebrahimi, "A study of phase transformations during the development of pressure-composition-isotherms for electrodeposited Mg-Al alloys", International Journal of Hydrogen Energy, 36(1), 639-647, 2011.
70	UCF	N. Mohajeri, A. T-Raissi, J. Baik, "TG/DTA of hydrogen reduction kinetics of TiO2 supported PdO chemochromic pigments", Thermochimica Acta, ,518(1-2),119-122, 2011.
71	UCF	N. Mohajeri, A. T-Raissi, J. Baik, "Reduction Kinetics studies of TiO ₂ supported PdO chemochromic pigment by H ₂ gas using TG/DTA", Thermochimica Acta, 518, 119-122, 2011.
72	UCF	N. Muradov, "At the crossroads of decarbonization: The coming age of energy gases", submitted to Energy and Environmental Science, (invited "Perspectives" article), 2012.

73	UCF	N. Muradov, "Fossil fuel decarbonization: In the quest for clean and lasting fossil energy", Chapter 14 in Carbon-Neutral Fuels and Energy Carriers, Muradov and Veziroglu, eds., Taylor & Francis, CRC Press, 2012
74	UCF	N. Muradov, "Hydrogen Fuel", Encyclopedia of Sustainability, Vol. 4, Berkshire, MA, 2012.
75	UCF	N. Muradov, B. Fidalgo, A. Gujar, N. Garceau, A. T-Raissi, "Production and characterization of duckweed bio-char and its catalytic application for biogas reforming", Biomass and Bioenergy, 41, 123-131, 2011.
76	UCF	N. Muradov, N. Veziroglu, "Energy options in a carbon-constrained world", Chapter 1 in Carbon-Neutral Fuels and Energy Carriers, Muradov and Veziroglu, eds., Taylor & Francis, CRC Press, 2012.
77	UCF	P. Brooker, L. Bonville, D. Slattery, "Decreasing Membrane Degradation through Heteropolyacid Sub-layers," Journal of the Electrochemical Society, under review.
78	UCF	P. Brooker, L. Bonville, D. Slattery, "Decreasing Membrane Degradation through Heteropolyacid Sub-layers", Journal of the Electrochemical Society, under review.
79	UCF	P. Brooker, M. Rodgers, L. Bonville, H. Kunz, D. Slattery, J. Fenton. "Influence of Trace Oxygen in Low-Crossover Proton Exchange Membrane Fuel Cells", Journal of Power Sources, accepted in Journal of Power Sources, 2012.
80	UCF	Q. Zhang, D. Zhang, H. Hu, X. Fang, J. Shen and I. Batarseh, "A controlled-Type ZVS technique Without Auxiliary Components for the low power DC/AC inverter," Power Electronics, IEEE Transactions on, vol. PP, pp. 1-1, 2012.
81	UCF	S. Chandra, S. Widders, R. Bartlett, J. McIlvaine, D. Chasar, D. Beal, et al, "Affordable Energy Efficient New Housing Solutions", Pacific Northwest National Laboratory, 03/12.
82	UCF	S. Rhoden, C. Linkous, N. Mohajeri, D. Díaz, P. Brooker, D. Slattery, J. Fenton, "Low equivalent weight Friedel-Crafts cross-linked sulfonated poly (ether ketone)", J. Membrane Science, 376 290–301, 2011.
83	UCF	W. Yao, C. Huang, N. Muradov, A., T-Raissi, "A novel Pd- Cr_2O_3/CdS photocatalyst for solar hydrogen production using a regenerable sacrificial donor", International Journal of Hydrogen Energy, 36(8), 4710-4715, 2011.
84	UCF	X. Fang, H. Hu, L. Chen, A. Amirahmadi, Z. J. Shen, and Issa Batarseh, "Operation Analysis and Numerical Approximation for the LLC DC-DC Converter," in <i>Proc. Of the</i> <i>27th Annual IEEE Applied Power Electronics Conference (APEC)</i> , Feb 2012, Orlando, Florida.
85	UCF	X. Fang, H. Hu, L. Chen, S. Utsav, E. Auadisian, J. Shen and I. Batarseh, "Efficiency Oriented Optimal Design of the LLC Resonant Converter Based on Peak Gain Placement," Power Electronics, IEEE Transactions on, vol. PP, pp. 1-1, 2012.
86	UCF	X. Fang, H. Hu, Z. J. Shen, and Issa Batarseh, "An Optimal Design of the LLC Resonant Converter Based on Peak Gain Estimation," in Proc. of the 27th Annual IEEE Applied Power Electronics Conference (APEC), Feb 2012, Orlando, Florida.
87	UCF	Z. Dehua, Z. Qian, A. Grishina, A. Amirahmadi, H. Haibing, J. Shen and I. Batarseh, "A comparison of soft and hard-switching losses in three phase micro-inverters," in Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, 2011, pp. 1076-1082.

88	UCF	Z. Dehua, Z. Qian, H. Haibing, A. Grishina, J. Shen and I. Batarseh, "High efficiency current mode control for three-phase micro-inverters," in Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE, 2012, pp. 892-897.
89	UF	M. Amb, M.R. Craig, U. Koldemir, J. Subbiah, K. Roy Choudhury, S.A. Gevorgyan, M. Jorgensen, F.C. Krebs, F. SO and J.R. Reynolds, "Aesthetically pleasing conjugated polymer: fullerene blends for green solar cells via roll-to-roll processing", Appl. Mater. Interfaces, (2012)
90	UF	"Biocatalytic Reductions of Baylis-Hillman Adducts." A.Z. Walton, W.C. Conerly, Y.A. Pompeu, B. Sullivan and <u>J.D. Stewart</u> , <i>ACS Catalysis</i> , 2011 , <i>1</i> , 989-993 (cover article).
91	UF	"Library Construction and Evaluation for Site Saturation Mutagenesis." B. Sullivan, A.Z. Walton and J.D. Stewart, Nucleic Acids Res. 2012 , submitted for publication.
92	UF	"Preparation of Enantiomerically Pure Citronellal Enantiomers Using Alkene Reductases." A.Z. Walton, B.T. Sullivan and <u>J.D. Stewart</u> in <i>Practical Methods for</i> <i>Biocatalysis and Biotransformations</i> , Whitall, J. Ed., John Wiley & Sons, 2012.
93	UF	"Structural and Catalytic Characterization of <i>Pichia stipitis</i> OYE 2.6, a Useful Catalyst for Asymmetric Alkene Reductions." Y.A. Pompeu, B. Sullivan, A.Z. Walton and <u>J.D.</u> <u>Stewart</u> , <i>Adv. Synth. Catal.</i> 2012 , <i>354</i> , 1949-1960.
94	UF	A Study of Hot Carrier Effects In The Photocurrent of CIGS Solar Cells, Yige Hu, Gijs Bosman, and Tim Anderson. Poster at FESC Symposium, September 2011, Gainesville, Florida
95	UF	A. Giani, E. Bitar, M. Garcia, M. McQueen, P. P. Khargonekar, and K. Poolla, "Smart Grid Data Integrity Attacks," submitted for publication to the IEEE Transactions on Smart Grid.
96	UF	A. Subramanian, E. Bitar, P. P. Khargonekar, and K. Poolla, "Market Induced Curtailment of Wind Power," Proc. 2012 IEEE PES General Meeting, 22 - 26 July 2012, San Diego, CA, USA.
97	UF	Alnaimat, F., Klausner, J.F., "Solar Diffusion Driven Desalination for Decentralized Water Production," <i>Desalination</i> , Vol. 289, pp. 35-44, 2012.
98	UF	Alnaimat, F., Klausner, J.F., Mei, R., "Transient Dynamic Response of Solar Diffusion Driven Desalination," accepted for publication, <i>Applied Thermal Engineering</i> , 2012.
99	UF	Alnaimat, F., Klausner, J.F., Mei, R., Greek, B., "Transient Analysis of Direct Contact Evaporation and Condensation Within Packed Beds," <i>Int. J. Heat Mass Transfer</i> , Vol. 54, pp. 3381-3393, 2011.
100	UF	Beaujuge, Pierre; Tsao, Hoi Nok; Hansen, Michael Ryan; Amb, Chad; Risko, Chad; Subbiah, Jegadesan; Choudhury, Kaushik; Mavrinskiy, Alexey; Pisula, Wojciech; Bredas, Jean-Luc; So, Franky; Mullen, Klaus; Reynolds, John, "Synthetic Principles Directing Charge Transport in Low Band-Gap Dithienosilole-Benzothiadiazole Copolymers", J. Am. Chem. Soc. (2012)
101	UF	Block, Stuart. (2012, June). Institutional Sustainability: The Personal Story of a Collegiate Solar Champion. University of Florida, Gainesville, FL. http://www.floridaenergy.ufl.edu/wp-content/uploads/FESC_CollegiateSolarChampion- June-26_2012.pdf
102	UF	Borisova, T., Racevskis, L. and Kipp, J. (2012), Stakeholder Analysis of a Collaborative Watershed Management Process: A Florida Case Study. JAWRA <i>Journal of the American Water Resources Association</i> , 48: 277-296. doi: 10.111/j.1752-1688.2011.00615.x

	-	
103	UF	C. Xiang, W.H. Koo, S. Chen, X. Liu, X. Kong, Y. Wang and F. So, "Solution processed multilayer cadmium-free blue/violet emitting quantum dot light emitting diodes", Appl. Phys. Lett. (2012)
104	UF	C.E. Small, S.W. Tsang, J. Kido, S.K. So, and F. So, "Study of charge injection in inverted organic unipolar devices using n-type hole injection layers", Adv. Funct. Mater. DOI: 10.1002/adfm.201200185 (2012)
105	UF	Cao B., S. Grunwald and X. Xiong. 2012. Cross-regional digital soil carbon modeling in two contrasting soil-ecological regions in the U.S. <i>In</i> Minasny B. , B.P. Malone, and A.B. McBratney (eds.). CRC Press, Taylor and Francis, 2012. ISBN: 978-0-415-62155-7.
106	UF	Castillo, M.S., L.E. Sollenberger, J.E. Erickson, C. Na, J.R. Fedenko. 2012. Alternative sources of nutrients for the production of lignocellulosic bio-energy crops. International Biofuels Crops Conference, Quito, Ecuador.
107	UF	Castillo, M.S., L.E. Sollenberger, J.M.B. Vendramini, and K.R. Woodard. 2010. Municipal biosolids as an alternative nutrient source for bioenergy crops. University of Florida, Institute of Food and Agricultural Sciences Bioenergy Crop Field Day. 15 July 2010, Citra, FL.
108	UF	Castillo, M.S., L.E. Sollenberger, J.M.B. Vendramini, K.R. Woodard, G.A. O'Connor, M.L. Silveira, and J.B. Sartain. 2011. Incorporation of municipal biosolids affects organic N mineralization and elephantgrass biomass production. Agron. J. 103:899-905.
109	UF	Castillo, M.S., L.E. Sollenberger, J.M.B. Vendramini, K.R. Woodard, Y.C. Newman, and G.A. O'Connor. 2011. Management of municipal biosolids as an alternative nutrient source for biomass production. p. 25-26. <i>In</i> 3 rd Annual Florida Energy Systems Consortium Summit. Gainesville, FL. 27-28 Sept. 2011. Florida Energy Systems Consortium, Gainesville, FL.
110	UF	Chow, V., G. Nong, F.J. St. John, J.D. Rice, E. Dickstein, O. Chertkov, D. Bruce, C. Detter, T. Brettin, J. Han, T. Woyke, S. Pitluck, M. Nolan, A. Pati, J. Martin, A. Copeland, M. Land, L. Goodwin, J.B. Jones, L.O. Ingram, K.T. Shanmugam, and J.F. Preston . 2012. Complete genome sequence of <i>Paenibacillus</i> sp. strain JDR-2. Stand. Genomic Sci.6:1-10.
111	UF	D. Bakken, A. Bose, K. M. Chandy, P. P. Khargonekar, A. Kuh, S. Low, A. von Meier, K. Poolla, P. P. Varaiya, and F. Wu, "GRIP – Grids with Intelligent Periphery: Control Architectures for Grid2050," Proc. IEEE Smart Grid Comm, pp. 2011
112	UF	DelValle, Terry B., Bradshaw, Joan, Larson, Barbra C., & Ruppert, Kathleen C. (2012, January). Energy Efficient Homes: Landscaping. University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/FY/FY105000.pdf
113	UF	E. Baeyens, E. Bitar, P. P. Khargonekar, K. Poolla, "Wind Energy Aggregation: A Coalitional Game Approach," Proc. IEEE Conference on Decision and Control, pp., 2011.
114	UF	E. Bayenes, E. Bitar, P. P. Khargonekar, and K. R. Poolla, "Coalitional Aggregation of Wind Power," submitted for publication to IEEE Transactions on Power Systems.
115	UF	E. Bitar, E. Baeyens, P. P. Khargonekar, K. Poolla, and P. Varaiya, "Optimal Sharing of Quantity Risk for a Coalition of Wind Power Producers Facing Nodal Prices," Proc. 2012 American Control Conference.
116	UF	E. Bitar, K. Poolla, P. P. Khargonekar, R. Rajagopal, P. Varaiya, and F. Wu, "Selling Random Wind," Proc. 2012 Hawaii International Conference on Systems Science.

117	UF	Elango Balu, J.N. Chung, System characteristics and performance evaluation of a trailer- scale downdraft gasifier with different feedstock, <i>Bioresource Technology</i> , Volume 108, March 2012, Pages 264-273, ISSN 0960-8524, 10.1016/j.biortech.2011.12.105.
118	UF	Elango Balu, J.N. Chung, System characteristics and performance evaluation of a trailer- scale downdraft gasifier with different feedstock, <i>Bioresource Technology</i> , Volume 108, March 2012, Pages 264-273, ISSN 0960-8524, 10.1016/j.biortech.2011.12.105.
119	UF	Erickson, J.E., A. Soikaew, L.E. Sollenberger, and J.M. Bennett. 2012. Water use and water-use efficiency of three perennial bioenergy grass crops in Florida. Agriculture (in press).
120	UF	Erickson, J.E., K.R. Woodard, and L.E. Sollenberger. 2011. Enhancing sweet sorghum production for biofuel in the southeastern US through nitrogen fertilization and top removal. Bioenergy Res. doi:10.1007/s12155-011-9129-3.
121	UF	Erickson, J.E., L.E. Sollenberger, K.R. Woodard, J.M.B. Vendramini, R.A. Gilbert, and Z.R. Helsel, 2011. Biomass yield and mineral composition of six potential perennial grass bioenergy crops for the Southeast. <i>In</i> ASA/CSSA/SSSA, San Antonio, TX.
122	UF	Erickson, J.E., Z.R. Helsel, K.R. Woodard, J.M.B. Vendramini, Y. Wang, L.E. Sollenberger, and R.A. Gilbert. 2011. Planting date affects biomass and brix of sweet sorghum grown for biofuel across Florida. Agron. J. 103:1827-1833.
123	UF	F.J. St John, J.C. Hurlbert, J.D. Rice, J.F. Preston, E. Pozharski, "Ligand Bound Structures of a Glycosyl Hydrolase Family 30 Glucuronoxylan Xylanohydrolase", Journal of Molecular Biology, 2011, 407,92-109
124	UF	Fedenko, J., J.E. Erickson, L.E. Sollenberger, J.M.B. Vendramini, R.A. Gilbert, K.R. Woodard, and L.O. Ingram. 2012. Biofuel potential of perennial grasses across Florida. <i>In</i> Florida Energy Summit Abstracts, 15-17 August 2012. Orlando, FL.
125	UF	 Fedenko, J.R., J.E. Erickson, L.E. Sollenberger, J.M.B. Vendramini, R.A. Gilbert, K.R. Woodard, and L.O. Ingram. 2012. Biofuel potential of perennial grasses across Florida. 2012 Power Up Energy Exposition, Pensacola Beach, FL.
126	UF	Fedenko, J.R., J.E. Erickson, L.E. Sollenberger, K.R. Woodard, R.A. Gilbert, J.M.B. Vendramini, and Z.R. Helsel. 2011. Lignin and fermentable sugars of perennial biofuel crops. <i>In</i> ASA/CSSA/SSSA, San Antonio, TX.
127	UF	Fedenko, J.R., J.E. Erickson, L.E. Sollenberger, L.O. Ingram, Z.R. Helsel, K.R. Woodard, J.M.B. Vendramini, and R.A. Gilbert. 2011. Biomass composition and theoretical ethanol potential of six tall grass species grown in Florida. p. 7. <i>In</i> 3 rd Annual Florida Energy Systems Consortium Summit. Gainesville, FL. 27-28 Sept. 2011. Florida Energy Systems Consortium, Gainesville, FL.
128	UF	Flory, S.L., K.A. Lorentz, D. Gordon, and L.E. Sollenberger. Experimental approaches for evaluating the invasion risk of biofuel crops. Environmental Research Letters (in review).
129	UF	Friedman, K., Heaney, J., Morales, M. and J. Palenchar. 2011. Water DemandManagement Optimization Methodology. Jour. American Water Works Assoc., Vol. 103,No. 9.http://library.conservefloridawater.org/publications/FriedmanJAWWA%20paper%20032511.pdf
130	UF	G. Lee, C. Thompson, T. Hwang, R. Chinga, J. Lin, "A 63W 14MHz Class-E Amplifier for Wireless Power Transmission," <i>Proceedings of the 24th Asia-Pacific Microwave</i> <i>Conference</i> , December 2012.

131	UF	Gerardo-Cuervo, H., L.E. Sollenberger, and K.R.Woodard. 2012. Evaluation of mechanisms of spread and control strategies for elephantgrass (<i>Pennisetum purpureum</i>). <i>In</i> ASA/CSSA/SSSA, Cincinnati, OH.
132	UF	Haldeman, Barbara, Porter, Wendell A., Ruppert, Kathleen C., & Cantrell, Randall A. (2012, March). Energy Efficient Homes: Introduction to LED Lighting. University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/FY/FY104900.pdf
133	UF	Haldeman, Barbara. (2012, June). Algae: A Future Fuel Source. University of Florida, Gainesville, FL. http://www.floridaenergy.ufl.edu/wp- content/uploads/FESC_Algae_2012-06-28.pdf
134	UF	Heaney, J., Switt, R., Friedman, K., Morales, M., and K. Riley. 2011. Overview of EZ Guide for Water Conservation Evaluations. Florida Water Resources Journal, Sept. <u>http://library.conservefloridawater.org/publications/Heaney%20FWRJ%20paper%200615</u> <u>11.pdf</u>
135	UF	Hunter, C.T., Kirienko, D.H., Sylvester, A.W., Peter, G.F., McCarty, D.R., Koch, K.E. 2012. Cellulose synthase
136	UF	Irfan Irfan, Sachiko Graber, Franky So, and Yongli Gao, "Interplay of cleaning and de- doping in oxygen plasma treated high work function indium tin oxide", Organic Electronics (2012)
137	UF	J. Garnica, J. Casanova, J. Lin, "High Efficiency Midrange Wireless Power Transfer System," <i>Proceedings of IEEE MTT-S International Microwave Workshop Series on</i> <i>Innovative Wireless Power Transmission: Technologies, Systems, and Applications</i> , pp. 73-76, Kyoto, May 12-13, 2011.
138	UF	J.Y. Kim, J.Y., K. Musa, W. Fouad, G. Nong, J.F. Preston and F. Altpeter, "Production of hyperthermostable GH10 xylanase Xyl10B from <i>Thermotoga maritima</i> in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production", Plant Molecular Biology, 2011,76, 357–369
139	UF	Jones, P., Taylor, N. and Kipp, M.J. (2012), Housing Stock Characterization Study: An Innovative Approach to Measuring Retrofit Impact, U.S. Department of Energy, Energy Efficiency and Renewable Energy, Building Energy Efficient Housing for America, Referred Technical Report, 54 pp. Online at http://www.nrel.gov/docs/fy13osti/54891.pdf
140	UF	Kannan, B., L.E. Sollenberger, and F. Altpeter. 2011. Genetically improved, interspecific hybrids between elephantgrass and pearl millet as feedstock for biofuel production p. 24. <i>In</i> 3 rd Annual Florida Energy Systems Consortium Summit. Gainesville, FL. 27-28 Sept. 2011.
141	UF	Kenneth R. Graham, Romain Stalder, Patrick Wieruszewski, Michael Hartel, Jianguo Mei, Franky So, <i>and</i> John R. Reynolds "Improved Performance of Molecular Bulk- Heterojunction Photovoltaic Cells through Predictable Selection of Solvent Additives", Adv. Funct. Mater. (2012)
142	UF	Kipp, J., Lathrop, C., Hostetler, M., Clark, M. and Jones, P. (2011), Implementing Low- Impact Development in Florida: Practitioners' Perspective. Florida Watershed Journal: 12-18. Online at http://www.floridawatershedjournal.com/home.asp
143	UF	L. Li, R. Mei, J.F. Klausner, D.W. Hahn. Heat Transfer between colliding surfaces and particles, <i>J. Heat Transfer - Trans. ASME</i> , 134, 10.1115 (2012).

144	UF	Lee, Hyun-Jeong, Ruppert, Kathleen C., & Porter, Wendell A. (2012a, May). Energy <u>Efficient Homes: Ceiling Fans. University of Florida, Gainesville, FL.</u> <u>http://edis.ifas.ufl.edu/pdffiles/FY/FY102900.pdf</u>
145	UF	Lee, Hyun-Jeong, Ruppert, Kathleen C., & Porter, Wendell A. (2012b, June). Energy Efficient Homes: Indoor Air Quality and Energy. University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/FY/FY104400.pdf
146	UF	Lee, Hyun-Jeong, Ruppert, Kathleen C., & Porter, Wendell A. (2012c, June). Energy Efficient Homes: Fluorescent Lighting. University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/FY/FY103100.pdf
147	UF	Lee, Hyun-Jeong, Ruppert, Kathleen C., Porter, Wendell A., & Prescott, Travis. (2012, June). Energy Efficient Homes: Appliances in General. University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/FY/FY103200.pdf
148	UF	Liang, X., J.E. Erickson, W.E. Vermerris, D.L. Rowland, L.E. Sollenberger, and M.L. Silveira. 2012. Growth, yield, and water relations of sorghum genotypes differing in root architecture under deficit irrigation. <i>In</i> ASA/CSSA/SSSA, Cincinnati, OH.
149	UF	López, Y., J. Seib, C.D. Chase, L.E. Sollenberger, K.R. Woodard, and M. Gallo. 2011. Cross-Taxa microsatellite primers transferability from pearl millet (<i>Pennisetum glaucum</i> (L.) R. Br.) to elephantgrass (<i>Pennisetum purpureum</i> Schumach.). Plant/Animal Genome Conf., San Diego, CA.
150	UF	López, Y., J.C. Seib, L.E. Sollenberger, K.R. Woodard, M. Gallo, and C.D. Chase. Microsatellite primers from pearl millet [<i>Pennisetum glaucum (L.) R. Br.</i>] reveal the genetic relationship of naturalized and cultivated <i>elephantgrass</i> [<i>Pennisetum purpureum</i> (Schum.)]. Crop Sci. (in press).
151	UF	Lunsford, K-A., Peter, G.F., Yost R., 2011. Direct Matrix-assisted Laser Desorption Ionization Mass Spectrometric Imaging of Cellulose and Hemicelluloses in <i>Populus</i> . <i>Analytical Chemistry</i> 83: 6722-6730.
152	UF	Lynn M. Jarrett. (2012, July). The Smart Grid: What it is and what it isn't. University of Florida, Gainesville, FL. http://www.floridaenergy.ufl.edu/wp- content/uploads/FESC Smart Grid final 12-08-011.pdf
153	UF	M.M. Bobek, R.C. Stehle, D.W. Hahn. Investigation of Iron Oxide Morphology in a Cyclic Redox Water-splitting Process for Hydrogen Generation, Materials, under review (2012).
154	UF	McCary, J. and J. Heaney. 2012. Linking Energy with Distribution System Pressure Optimization. Dept. of Environmental Engineering Sciences, U. of Florida, Gainesville.
155	UF	Morales, M., Friedman, K., and J. Heaney. 2013. Parcel-level Model of Indoor Urban Water and Energy End Use Demands. Submitted to <i>Journal of Water Resources Planning and Management</i> , October 2012.
156	UF	Morales, M., Heaney, J., Friedman, K., and Martin J. 2011. "Estimating Commercial, Industrial, and Institutional Water Use on the Basis of Heated Building Area." Jour. American Water Works Assoc., Vol. 103, No. 6. http://library.conservefloridawater.org/publications/JAWWA2011_Estimating%20CII_M %20Morales.pdf
157	UF	Na, C., L. E. Sollenberger, J.E. Erickson, K.R. Woodard, N.C. Krueger, J.M.B. Vendramini, and M.L.A. Silveira. 2011. Seasonal changes in growth and morphological characteristics of bioenergy grasses in the USA Gulf Coast Region. <i>In</i> ASA/CSSA/SSSA, San Antonio, TX.

170	UF	Ross C.W., S. Grunwald, and D.B. Myers. 2011. Spatiotemporal modeling of soil carbon stocks across a subtropical region. Soil Sci. Soc. Am. J. (in review).
169	UF	Ross C.W. 2011. Spatiotemporal modeling of soil organic carbon across a subtropical region. M.S. thesis. University of Florida, Gainesville, FL.
168	UF	Resende, Jr., M.F.R., Muñoz, P., Resende, M.D.V., Garrick, D.J., Fernando, R.L., Davis, J.M., Jokela, E.J., Martin, T.A., Peter, G.F., Kirst, M., 2012. Accuracy of Genomic Selection Methods in a Standard Dataset of Loblolly Pine (<i>Pinus taeda</i> L.). <i>Genetics</i> 190: 1503
167	UF	Resende, Jr., M.F.R., Muñoz, P., Acosta, J.J., Peter, G.F., Davis, J.M., Grattapaglia, D., Resende, M.D.V., Kirst, M. 2012. Accelerating the Domestication of Trees Using Genomic Selection: Accuracy of Prediction Models Across Ages and Environments. <i>New</i> <i>Phytologist</i> 193: 617
166	UF	R.C. Stehle, M.M. Bobek, R. Hooper, D.W. Hahn. Oxidation Reaction Kinetics for the Steam-Iron Process in Support of Hydrogen Production, <i>Int. J. Hydrogen Energy</i> , 36, 15125-15135 (2011).
165	UF	Porter, Wendell A., Lee, Hyun-Jeong, Ruppert, Kathleen C., & Cantrell, Randall A. (2011b, August). Energy Efficient Homes: The Duct System. University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/FY/FY102400.pdf
164	UF	Porter, Wendell A., Lee, Hyun-Jeong, Ruppert, Kathleen C., & Cantrell, Randall A. (2011a, August). Energy Efficient Homes: Water Heaters. University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/FY/FY102500.pdf
163	UF	Porter, Wendell A., Lee, Hyun-Jeong, & Ruppert, Kathleen C. (2012, June). Energy Efficient Homes: Air Conditioning. University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/FY/FY102600.pdf
162	UF	Patarasuk R., S. Grunwald, T.A. Martin and B. Hoover. 20 Integrative modeling of tree response along geographic and ecological trajectories in the southeastern U.S. Ecological Modeling J. (in preparation).
161	UF	Na, Chaein, L.E. Sollenberger, J.E. Erickson, K.R. Woodard, M.L. Silveira, and J.M.B. Vendramini. 2012. Harvest management effects on yield, composition, and nitrogen dynamics of perennial bioenergy grasses. <i>In</i> ASA/CSSA/SSSA, Cincinnati, OH.
160	UF	Na, C., L.E. Sollenberger, J.E. Erickson, K.R. Woodard, M. S. Castillo, M.L.A. Silveira, and J.M.B. Vendramini. 2011. Harvest frequency and timing affect perennial bioenergy grass yield and composition. <i>In</i> ASA/CSSA/SSSA, San Antonio, TX.
159	UF	Na, C., L.E. Sollenberger, J.E. Erickson, and K.R. Woodard. 2012. Effect of harvest frequency and timing on perennial bioenergy grass yield and composition in Florida. <i>In</i> Florida Energy Summit Abstracts, 15-17 August 2012. Orlando, FL.
158	UF	Na, C., L.E. Sollenberger, J.E. Erickson, and K.R. Woodard. 2011. Seasonal changes in physiological and morphological characteristics of perennial bioenergy grasses in Florida. p. 27. <i>In</i> 3 rd Annual Florida Energy Systems Consortium Summit. Gainesville, FL. 27-28 Sept. 2011. Florida Energy Systems Consortium, Gainesville, FL.

171	UF	Ruppert, Kathleen C., Lee, Hyun-Jeong, & Building a Safer Florida. (2012, June). Energy Efficient Homes: Home Inspections. University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/FY/FY104800.pdf
172	UF	Ruppert, Kathleen C., Porter, Wendell A., & Lee, Hyun-Jeong. (2012, June). Energy Efficient Homes: Windows and Skylights. University of Florida, Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/FY/FY104500.pdf
173	UF	S. Chen, J. Manders, S.W. Tsang, J.R. Reynolds, F. So, "Metal-oxides for organic photovoltaics", Invited review published in Journal of Materials Chemistry (2012)
174	UF	S. Chen, S.W. Tsang, C.E. Small, J.R. Reynolds, F. So, "Inverted polymer solar cells", Invited paper , Breakthroughs in Photonics 2011, IEEE Photonics Journal 4, 625-628 (2012)
175	UF	S. Yoshida, M. Tanomura, R. A. Chinga, W. Chen, J. Lin, "A Radio Frequency Rectifier with Efficiency-Improving Harmonic-Termination Circuit for Wireless Power Transmission," 42nd European Microwave Conference Proceedings, October 2012.
176	UF	Singh, M.P., J.E. Erickson, L.E. Sollenberger, K.R. Woodard, J.M.B. Vendramini, and J.R. Fedenko. Mineral composition and biomass partitioning of sweet sorghum grown for biomass in the southeastern USA. Biomass Bioenergy (in press).
177	UF	Sollenberger, L.E., K.R. Woodard, J.M.B. Vendramini, C.D. Chase, Y. Lopez, M. Gallo, J. Seib, K.A. Langeland, and H. Gerardo-Cuervo. 2011. Are all elephantgrasses invasive? Characterization of natural populations and cultivated types of a bioenergy grass in Florida. <i>In</i> ASA/CSSA/SSSA, San Antonio, TX.
178	UF	Sollenberger, L.E., K.R. Woodard, J.M.B. Vendramini, C.D. Chase, Y. Lopez, M. Gallo, J. Seib, K.A. Langeland, and H. Gerardo-Cuervo. 2011. Characterization of invasive potential of naturalized populations and cultivated types of elephantgrass, a bioenergy species for Florida. p. 14. <i>In</i> 3 rd Annual Florida Energy Systems Consortium Summit. Gainesville, FL. 27-28 Sept. 2011. Florida Energy Systems Consortium, Gainesville, FL.
179	UF	Song Chen, Cephas E. Small, Chad M. Amb, Jegadesan Subbiah, Tzung-han Lai, Sai- Wing Tsang, Jesse M. Manders, John R. Reynolds' and Franky So, "Inverted Polymer Solar Cells with Reduced Interface Recombination", Adv. Energy Mater. DOI: 10.1002/aenm.201200184 (2012)
180	UF	St. John, F.J., J.F. Preston , E. Pozharski. 2012. Novel structural features of xylanase A1 from <i>Paenibacillus</i> sp. JDR-2. J. Structural Biol. In Press.
181	UF	T.S. Lee, J. N. Chung and Y.C. Chen, "Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling," <i>Energy Conversion and Management</i> , Vol. 48, p. 163-182, (2010).
182	UF	Taylor, N., Jones, P., Kipp, M.J. and Miller, C.R. (2012), Evaluating Ten Years of Energy Performance of HERS-Rated Homes, working paper in process.
183	UF	Taylor, N.W., Jones, P.H. and Kipp, M.J. (2012), Targeting Energy Efficiency Programs for Greater Impact, working paper in process.
184	UF	Taylor, Nicholas W., Kipp, M. Jennison, & Ruppert, Kathleen C. (2012, June). EnergyEfficient Homes: Incentive Programs for Energy Efficiency. University of Florida,Gainesville, FL. http://edis.ifas.ufl.edu/pdffiles/FY/FY103300.pdf
185	UF	Udit N. Shrivastava, Keith L. Duncan, J.N. Chung, Experimentally validated numerical modeling of Eu doped SrCeO3membrane for hydrogen separation, <i>International Journal of Hydrogen Energy</i> , Vol. 37, pp. 15350-15358, (2012).

186	UF	Uisung Lee, Elango Balu, J.N. Chung, An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications, <i>Applied Energy</i> , In Press, Available online 30 August 2012, ISSN 0306-2619, 10.1016/j.apenergy.2012.07.036.
187	UF	W. Chen, R. A. Chinga, S. Yoshida, J. Lin, C. Chen, W. Lo, "A 25.6 W 13.56 MHz wireless power transfer system with a 94% efficiency GaN Class-E power amplifier," IEEE MTT-S International Microwave Symposium Digest, pp.1-3, June 2012.
188	UF	Won Hoe Koo, Wooram Youn, Renbo Song, Le Zhao, Nelson Tansu, Franky So "Light extraction of organic light emitting diodes by defective hexagonal-close-packed array", Adv. Funct. Mater. (2012)
189	UF	X. Geng and P. P. Khargonekar, "Electric Vehicles as Flexible Loads: Algorithms to Optimize Aggregate Behavior," Proc. 2012 IEEE SmartGridComm, pp., November 2012.
190	UF	Xiong X., S. Grunwald, D.B. Myers, J. Kim*, W.G. Harris and N.B. Comerford. 2012. Which soil, environmental and anthropogenic covariates for soil carbon models in Florida are needed? The 5 th Global Workshop on Digital Soil Mapping 2012, Sydney, Australia, April 10-13, 2012.
191	UF	Xiong X., S. Grunwald, D.B. Myers, J. Kim, W.G. Harris and N.B. Comerford. 20 Optimal selection of predicting variables for soil carbon modeling in Florida, USA. Geoderma (in review).
192	UF	Xiong X., S. Grunwald, D.B. Myers, J. Kim, W.G. Harris and N.B. Comerford. 2012. Which soil, environmental and anthropogenic covariates for soil carbon models in Florida are needed? <i>In</i> Minasny B. , B.P. Malone, and A.B. McBratney (eds.). CRC Press, Taylor and Francis, 2012. ISBN: 978-0-415-62155-7.
193	UF	Y. Guo, M. Pan, Y. Fang, and P. P. Khargonekar, "Coordinated Energy Scheduling for Residential Households in the Smart Grid," Proc. 2012 IEEE SmartGridComm, pp., November 2012.
194	UF/PURC	Berg, Sanford V. Forthcoming. "Strategic Adaptations: Lessons from U.S. Electricity Industry in the 20th Century" The Electricity Journal
195	UF/PURC	Hauge, Janice A., Mark A. Jamison, and James E. Prieger. 2012. "Oust the Louse: Does Political Pressure Discipline Regulators?" The Journal of Industrial Economics. 60(2): 299-332.
196	UF/PURC	Jamison, Mark A., and Araceli Castaneda. 2012. "Execution and Leadership: Fulfilling Conflicting Responsibilities in Utility Regulation" University of Florida, Department of Economics, PURC Working Paper.
197	UF/PURC	Jamison, Mark A., Sanford Berg and Theodore Kury. 2012. "Rules for Renewables: Aligning Roles and Incentives for Renewable Energy." University of Florida, Department of Economics, PURC Working Paper.
198	UF/PURC	Sanford V. Berg and Theodore J. Kury, "New Tools for Regulators in Addressing the Impact of Renewable Energy and Energy Efficiency Policy" University of Florida, Department of Economics, PURC Working Paper, 2012
199	UF/PURC	Silbert, Megan E., and Maria del Pilar Useche. 2012. "Repeated Natural Disasters and Poverty in Island Nations: A Decade of Evidence from Indonesia" University of Florida, Department of Economics, PURC Working Paper.
200	UF/PURC	Theodore J. Kury, "Performance Assessment of the Florida Electric Power Network System against Hurricanes", 2011 [with Charles R. Glagola, Kurtis R. Gurley, Young Jun Park, and Sungjin Ahn]

201	UF/PURC	Theodore J. Kury, "The Impact of Transparent Wholesale Markets on Market Participation in the U.S. Electricity Industry" University of Florida, Department of Economics, PURC Working Paper, 2012.
202	USF	Abutayeh, M., Goswami, Yogi, and Stefanakos, E.K. (2012) "Solar thermal power plant simulation," <i>Environmental Progress and Sustainable Energy</i> , American Institute of Chemical Engineers. Wiley Online Library, DOI 10.1002/ep.11636, (April 13, 2012).
203	USF	Alvi, F., Basnayaka, P., Ram, M.K., Goswz, H., Stefanakos, E., and Goswami, Y. (2012) "Graphene-polythiophene nanocomposite as novel supercapacitor electrode material," <i>Journal of New Materials for Eletrochemical Systems</i> , 089.
204	USF	Alvi, F., Ram, M.K., Basnayaka, P.A., Stefanakos, E., Goswami, Y., and Kumar, A. (2011) "Graphene-polyethylenedioxythiophene Conducting polymer nanocomposite based supercapacitor," <i>Electrochimica Acta</i> , 56 (25), pp. 9406-9412.
205	USF	C. A. Coutinho, B. D. Mankidy, and V. K. Gupta "A Simple Refraction Experiment for Probing Diffusion in Ternary Mixtures", <i>Chemical Engineering Education</i> 44(2), 134 (2010).
206	USF	Chen, H., Goswami, D. Yogi, Rahman, M.M., and Stefanakos, E.K. (2011) "A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power," <i>Energy</i> , vol. 36 (1), pp. 549-555.
207	USF	Chen, H., Goswami, D.Y., Rahman, M.M. and Stefanakos, E.K. (2011) "Energetic and Exergetic analysis of CO_2 - and R32-based Transcritical Rankine Cycles for Low-Grade Heat Conversion," <i>Applied Energy</i> , 88 (8), pp. 2802-2808.
208	USF	Crane, N. B., and McKnight, P., "Impact of Self-assembly Process Errors on Thermoelectric Performance," <i>Journal of Electronic Packaging</i> , 2012, Vol 134, pg 031001-1-7.
209	USF	Crane, N. B., Tuckerman, J., and Nielson, G. N., "Self Assembly in Additive Manufacturing: Opportunities and Obstacles," <i>Rapid Prototyping Journal</i> , Vol 17, No 3, 2011, p 211-217.
210	USF	D. Mankidy, C. A. Coutinho, and V. K. Gupta*, "Probing the Interplay of Size, Shape, and Solution Environment on Macromolecular Diffusion using a Simple Refraction Experiment", <i>Journal of Chemical Education</i> 87(5), 515-518 (2010)
211	USF	Dalrymple, O.K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q., Ergas, S.J. (accepted) A preliminary estimation of the algal feedstock production potential of Tampa Bay utilizing CO2 emissions and wastewater effluent, <i>J. Aquatic Biosystems</i> .
212	USF	Dalrymple, O.K., Isaacs, W., Stefanakos, E., Trotz, M.A. and Goswami, D.Y. (2011) "Lipid Vesicles as Model Membranes in Photocatalytic Disinfection Studies," <i>Journal of</i> <i>Photochemistry and Photobiology A: Chemistry</i> , 221 (1), pp. 64-70.
213	USF	Demirkaya, G., Padilla, R.V., Goswwami, D.Y., Stefanakos, E., Rahman, M.M. (2011) "Analysis of a combined power and cooling cycle for low-grade heat sources," <i>International Journal of Energy Research</i> , 35 (13), pp. 1145-1157.
214	USF	Demirocak, D.E., Kuravi, S., Ram, M.K., Jotshi, C.K., Srinivasan, S., Kumar, A., Goswami, Y., and Stefanakos, E. (2012) "Investigation of polyaniline nanocomposites and cross-linked polyaniline for hydrogen storage, <i>Advanced Materials Research</i> , vol. 445, 571-576.

· · · · · ·		
215	USF	Demirocak, D.E., Ram, M.K., Srinivasan, S., Kumar, A., Goswami, Y., and Stefanakos, E. (2012) "Spillover enhancement for hydrogen storage by Pt doped hypercrosslinked polystyrene," <i>International Journal of Hydrogen Energy</i> , 37, pp. 12402-12410.
216	USF	Gómez, H., Ram, M.K., Alvi, F., Villalba, P., Stefanakos, E. and Kumar A. (2011) "Graphene-Conducting Polymer Nanocomposite as Novel Electrode for Supercapacitor," <i>J. Power Sources</i> , 196(8), pp. 4102-4108.
217	USF	Gómez, H., Ram, M.K., Alvi, F., Villalba, P., Stefanakos, E. and Kumar A. (2011) "Novel synthesis, characterization, and corrosion inhabitation properties of nanodiamond-polyaniline films," <i>Journal of Physical Chemistry C</i> , 114(44), pp. 18797-18804.
218	USF	Khodayari, M., Carballo, J., and Crane, N. B., "A reliable low voltage anodic electrowetting material system," <i>Materials Letters</i> , Vol 69, 2012, p 96-99.
219	USF	Kumar, A., Yuan, X., Sahu, A.K., Zhang, Q., Ergas, S.J., Malcata, F. X., Van Langenhove, H. (2010) Strategies for CO_2 sequestration using microalgae and cyanobacteria: Recent developments and future directions, <i>Trends in Biotechnology</i> , 28(7): 371-380.
220	USF	L. Piyasinghe, and Z. Miao, "Investigate the Microgrid Operation with Pulsed Power Loads," Technology and Innovation (accepted).
221	USF	M. Celestin, S. Krishnan, E. Stefanakos, Y. Goswami, S. Bhansali, "A review of Alkanethiol Self-Assembled Monolayers for Low Cost Nano Rectenna Energy Harvesting," Progress in Energy and Combustion Science, 2012. (Under Review)
222	USF	N. Balakrishnan, V. Bhethanabotla, B. Joseph , "Promotional Effect of Platinum in Fischer Tropsch Synthesis Using Cobalt Catalysts: A DFT Study," Surface Science, Volume 606, Issues 5–6, March 2012, Pages 634–643.
223	USF	Ozgener, O., Ozgener, L., and Goswami, D.Y. (2011) "Experimental prediction of total thermal resistance of a closed loop EAHE for greenhouse cooling system," <i>International Communciations in Heat and Mass Transfer</i> , 38 (6), pp. 711-716.
224	USF	Padilla, R.V., Demirkaya, G., Goswami, D.Y., Stefanakos, E., and Rahman, M.M. (2011) "Heat transfer analysis of parabolic trough solar receiver," <i>Applied Energy</i> , Vol. 88, pp. 5097-5110.
225	USF	Ram, M.K., Gomez, H., Alvi, F., Stefanakos, E., Goswami, Y. and Kumar, A. (2011) "Novel nanohybrid structured regioregulator polyhexylthiophene blend films for photoelectrochemcial energy applications," <i>Journal of Physical Chemistry C</i> . 115(44), pp. 21987-21995.
226	USF	Razykov, T.M., Amin, N., Alghoul, M.A., Ergashev, B., Ferekides, C.S., Goswami, Y., Hakkulov, M.K., Kouchkarov, K.M., Sopian, K., Sulaiman, M.Y., and Ullal, H.S. (2012) "Effect of the composition on physical properties of CdTe absorber layer fabricated by chemical molecular beam deposition for use in thin film solar cells," <i>Journal of Applied Physics</i> , 112, 023517.
227	USF	Razykov, T.M., Ferekides, C.S., Morel, D., Stefanakos, E., Ullal, H.S., and Upadhyaya, H.M. (2011) "Solar photovoltaic electricity: Current status and future prospects," <i>Solar Energy</i> (invited review article for special issue " <i>Progress in Solar Energy</i>), 85 (8), pp. 1580-1608.
228	USF	Russell S.R. Hybrid ZEH for Florida's Hot Humid Climate, The International Journal of Design & Nature and Ecodynamics, WIT Press.

229	USF	Syed Ali Gardezi, Babu Joseph , John T. Wolan. Effect of Catalyst Preparation Conditions on the Performance of Eggshell Cobalt/SiO ₂ Catalysts for Fischer-Tropsch Synthesis. Paper accepted by Journal of Applied Catalysis, A, Sept 2012.
230	USF	Syed Ali Gardezi, Lucky Landrigan, Babu Joseph , and John T. Wolan, Synthesis of Tailored Eggshell Cobalt Catalysts for Fischer–Tropsch Synthesis Using Wet Chemistry Techniques, <i>Ind. Eng. Chem. Res.</i> , 2012, <i>51</i> (4), pp 1703–1712.
231	USF	Weisberg, R., et al. <i>Jour. Geophys. Res. – Oceans</i> was judged to be outside the scope of the that journal's mission. The paper was subsequenty revived and submitted to the Journal of the Marine Technology Society. The revised paper was peered reviewed and accepted for publication.
232	USF	Weisberg, R.H., Y. Liu, C.R. Merz, J.I. Virmani, and L. Zheng (2012). A critique of alternative power generation for Florida by mechanical and solar means, <i>J. Mar. Tech. Soc.</i> , Sept/Oct 2012, 46, 5, 1-12.
233	USF	Wijewardane, S., Goswami, D. Y., (2012) "A review on surface control of thermal radiation by paints and coatings for new energy applications" Renewable and Sustainable Energy Reviews, Vol. 16, 1863–1873.
234	USF	Wijewardane, S., Goswami, D. Y., (2012), "Exergy of partially coherent thermal radiation", <i>Energy</i> , 42, pp 497-502. doi:10.1016/j.energy.2012.03.019.
235	USF	Yangyang Zhang, Elias K. Stefanakos, and D. Yogi Goswami , Design of an efficient photocatalytic reactor with artificial surface roughness for air purification. <i>Atmospheric Environment</i> 2012 (finished)
236	USF	Yangyang Zhang, Elias K. Stefanakos, and D. Yogi Goswami , Effect of photocatalytic surface roughness on reactors effectiveness for indoor air cleaning. <i>Atmospheric Environment</i> 2012 (Under review)
237	USF	Yangyang Zhang, Elias K. Stefanakos, and D. Yogi Goswami, Optimum photocatalytic reactor performance with surface roughness arrangement for indoor air cleaning. <i>Atmospheric Environment</i> 2012 (finished)
238	USF	Yangyang Zhang, Manoj K. Ram, Elias K. Stefanakos, and D. Yogi Goswami , Synthesis, Characterization, and Applications of ZnO nanowires. <i>Journal of</i> <i>Nanomaterials</i> 2012
239	USF	Yuan, X., Kumar, A., Sahu, A.K., Ergas, S.J. (2011) Impact of Ammonia Concentration on <i>Spirulina platensis</i> Growth in an Airlift Photobioreactor, <i>Bioresource Technology</i> , 102(3): 3234-3239.
240	USF	Yuan, X., Wang, M., Park, C., Sahu, A.K., Ergas, S.J. (2012) Microalgae Growth Using High Strength Wastewater Followed by Anaerobic Co-digestion, <i>Water Environ. Research</i> , 84(5):396-404.
241	USF	Z. Miao, A. Domijan, and L. Fan, "Investigation of Microgrids with Both Inverter Interfaced and Direct AC Connected Distributed Energy Resources," IEEE Trans. Power Delivery, vol. 26, no. 3, pp. 1634-1642, July 2011.
242	USF	Z. Miao, A. Domijan, and L. Fan, "Negative Sequence Compensation for Unbalance in Distributed Energy Resources Interfacing Inverters," <i>International Journal of Power and Energy Systems</i> , no. 3, 2012.

4. <u>Professional Presentations Made by FESC faculty</u>

During Oct. 1, 2011 to Sep 30, 2012 Period

(Back to top)

Total # of Presentations: 202

#	Faculty	University	Title/Event	Date
1	M. A. Uddin, T. I. Talukder, A. K. F. Haque, A.K.Basak, B. C. Saha and F. B. Malik	FAMU	"A simple model for evaluating stopping cross sections of H+, He++, Li 3+", Phys. Letts (submitted) 2012	2012
2	B. Ritchie, C. Weatherford	FAMU	"Algebra of Physical Space and the Geometric Space- Time Solution of Dirac's Equation," International Journal of Quantum Chemistry, DOI: 10.1002/qua.24156 (2012)	2012
3	L. B. Zhao, B. C. Saha, and M. L. Du	FAMU	"Calculation of excited states of He atoms in a strong magnetic field", Comm. In Theo. Physics, 57,1059, (2012).	2012
4	D.H. Gebremedhin and C.A. Weatherford	FAMU	"Canonical Two-Range Addition Theorem for Slater- Type Orbitals," International Journal of Quantum Chemistry, DOI: 10.1002/qua.24319 (2012).	2012
5	Y.Shulga, S. Baskakov, V. Muradyan, D. Voilov, V. Smirnov, A. Michtchenko, J. Cabañas-Moreno, K. Belay, C. Weatherford, and G. L. Gutsev	FAMU	"Colorful Polymer Compositions With Dyed Graphene Oxide Nanosheets", International Scholarly Research Networks Optics 2012, 1-5 (2012).	2012
6	K.M. Williams, A.B. Alexander, M. Scott, J. Buchanan	FAMU	"Self-Organization in Hypersonic Shock Driven Plasmas", Presented at the 2011 APS Division of Plasma Physics Meeting, Salt Lake City, UT	2011
7	Gennady Gutsev, Charles Weatherford, Puru Jena, Elijah Johnson, Bala Ramachandran	FAMU	"Structural Patterns in Carbon Chemisorption on an Icosahedral Iron Clusters", Journal of Physical Chemistry B, 116 7050-7061 (2012).	2012
8	C. Weatherford, Kalayu Belay, Gennady Gutsev	FAMU	"Theoretical and Experimental Studies of Fullerite Modified by Oxidation, Intercalation, and Radiation," 2011 Florida Energy Systems Consortium Summit, University of Florida Reitz Union, Gainesville, Florida, September 28, 2011.	2011
9	D. Gebremedhin, E. Quashie, C. A. Weatherford and B. C. Saha	FAMU	"Photoionization of H atom in electric field: Finite Element Technique", 43rd DAMOP Meeting, Orange County, CA (2012).	2012
10	C. Weatherford	FAMU	"Algebra of Physical Space and the Geometric Space- Time Solution of Dirac's Equation," 52nd Sanibel Symposium, February 23, 2012, St. Simon's Island, GA.	2012
11	B. Ritchie, C. Weatherford	FAMU	"Algebra of Physical Space and the Geometric Space- Time Solution of Dirac's Equation," Proceedings of the 52nd Sanibel Symposium, February 23, 2012, St. Simon's Island, GA.	2012

12	Nicolais. L. Guevera and Bidhan. C. Saha	FAMU	"Collisions of C6+ with atomic and molecular hydrogen", Phys. Rev. A (under consideration) (2012).	2012
13	X. Zhang and C.A. Weatherford	FAMU	"Evolution Strategy for Controlling Diatomic Molecular Vibration States with the Space-Time Algorithm," 14th International Congress on Quantum Chemistry, June 25-30, 2012 Boulder, CO.	2012
14	James B. Titus, Alonzo B. Alexander, Kyron Williams, Charles Weatherford, and Joseph A. Johnson III	FAMU	"FAMU Spheromak and the Turbulent Physics Experiment—STPX", Technology and Innovation 14, 1-11, 2012.	2012
15	D. Gebremedhin, E. Quashie, C. A. Weatherford and B. C. Saha	FAMU	"Photoionization of H atom in electric field: Finite Element Technique", 43rd DAMOP Meeting, Orange County, CA (2012).	2012
16	C.Y. Scarlett, H.C. Chen, R.J. Peteraon	FAMU	"Proton Spectrum at the Jupiter Facility of LLNL,", arXiv 1204.3819 (2012).	2012
17	Charles Weatherford and Xingjun Zhang	FAMU	"Quantum Control of Diatomic Molecular Vibration States Using Space-Time Discretization", Bulletin of the American Physical Society (2012).	2012
18	D. C. Joseph and B. C. Saha	FAMU	"Si3+ +H collisions: role of rotational couplings", 43rd DAMOP Meeting, Orange County, CA (2012).	2012
19	D. C. Joseph, J. P. Gu and B. C. Saha	FAMU	"State selective charge-transfer in slow collisions of Si3+ with H", Phys. Rev. A (under consideration) (2012).	2012
20	G.L. Gutsev, C.A. Weatherford, P. Jena, E. Johnson, and B.R. Ramachandran	FAMU	"Structure and Properties of Fe, Fe-n, Fe+n Cluster, n=7-20", Accepted Journal of Physical Chemistry A.	2012
21	Gennady L. Gutsev, Charles A. Weatherford, Lewis E. Johnson, Purusottam Jena	FAMU	"Structure and Properties of the Aluminum Borates Al(BO2)n and Al(BO2)n-, (n=1-4)", Journal of Computational Chemistry 33(4), 416-424 (2012).	2012
22	K.M. Williams, E.D. Mezonlin, A.B. Alexander, C.A. Weatherford, J.A. Johnson III	FAMU	"The Spheromak Turbulent Plasma Experiment: The Next Phase in Spheromak Physics", Presented at the 2011 APS Division of Plasma Physics Meeting, Salt Lake City, UT	2011
23	C.A. Weatherford and G. Gutsev	FAMU	"Theoretical and Experimental Studies of Fullerite Modified by Oxidation, Intercalation, and Radiation", Electronic Structure Theory for Strongly Correlated Systems, May 30 to June 1, 2012, Palermo, Italy.	2012
24	Susan H Skemp, Executive Director and P.I., SNMREC	FAU	"MHK Ocean Renewable Energy - SNMREC"; Southern Environmental Journalist Confernece, Miami Beach, FL	10/11/2011
25	Dr. James VanZwieten, Jr.	FAU	 "Hydrokinetic Energy Extraction Potential of a Turbine Array Placed Across the Florida Current"; FAU Community Salon presentation series, Boca Raton, Florida 31st International Conference on Ocean, Offshore and Arctic Engineering, (1-6 July, 2012, Rio de Janeiro, Brazil): Contributed paper, A.E.S. Duerr and M.R. Dhanak 	3/1/2012

26	Dr. Howard P. Hanson (with A. Smentek-Duerr, J. Van Zwieten)	FAU	"Design Challenges of the Florida Current"; Florida Energy Summit (Poster)	8/12/2012
27	Dr. Howard Hanson, Scientific Director, SNMREC	FAU	"Design Considerations for Ocean Current Turbines";National Wind Technology Center, NREL, DOE Reference Model Meeting	11/11/2011
28	Dr. Howard P. Hanson	FAU	"Energy from the Florida Current: Toward Commercialization"; North Carolina Ocean Energy Consortium	9/12/2012
29	Dr. Howard Hanson, Scientific Director, SNMREC	FAU	"Green Light Considerations for MRE"; Offshore Renewable Energy Conference - Getting the Green Light to Deploy and Produce	10/11/2011
30	Dr. Howard P. Hanson	FAU	"Marine Renewable Energy in Florida"; U.S. Dept. of State, International Visitors' Program	8/12/2012
31	Dr. Howard P. Hanson	FAU	"Marine Renewable Energy: Resources and Challenges in Florida"; Palm Beach Chapter, Americal Society of Civil Engineers	8/12/2012
32	Dr. Howard Hanson, Scientific Director, SNMREC	FAU	"Marine Renewable Energy: HASE Challenges" ; 13th IEEE International High Assurance Systems Enginerring Symposium, Boca Raton, FL	11/1/2011
33	Dr. Howard P. Hanson	FAU	"Marine Renewable Energy: Resources and Challenges"; West Palm Beach Pack & Paddle Club	7/12/2012
34	Susan H Skemp, Executive Director and P.I., SNMREC	FAU	"MHK Ocean Renewable Energy - SNMREC" at the SNMREC Public Forum as part of the Harbor Branch Oceanographic Institute's "Ocean Sciences Leadership Seminar"; Harbor Branch Oceanographic Institute, Ft Pierce, FL	1/1/2012
35	Susan H Skemp, Executive Director and P.I., SNMREC	FAU	"MHK Ocean Renewable Energy - SNMREC"; Dania Beach, FL	10/11/2011
36	Susan H Skemp, Executive Director and P.I., SNMREC	FAU	"Ocean Energy, a Path Forward to Sustainability" ; Florida Green, Energy & Climate Conference, West Palm Beach, FL	5/1/2012
37	Dr. Howard Hanson, Scientific Director, SNMREC	FAU	"Power from the Florida Current: Beyond Assessment" ; Fifth Global Marine Renewable Energy Conference, Washington DC	4/1/2012
38	Dr. James VanZwieten, Jr.	FAU	"Marine Renewable Energy"; Presentation given at the Museum of Discovery and Science, July 26, 2012, Fort Lauderdale, Florida	7/1/2012
39	Dr. James VanZwieten, Jr.	FAU	"Numerical Simulation of Ocean Current Turbines"; SNMREC Brown Bag Lunch presentation Series, August 22, 2012, Boca Raton, Florida	8/1/2012
40	Camille Coley, Associate Director, SNMREC	FAU	Panel Presentation at the FL Energy Summit; Orlando, FL	10/12/2011
41	Susan H Skemp, Executive Director and P.I., SNMREC	FAU	Program Overview "MHK Ocean Renewable Energy - SNMREC"; Total of six Public Forums	April & May 2012
42	William Baxley, Chief Engineer, SNMREC	FAU	Teledyne ADCP Conference; San Diego, CA	10/11/2011
43	David Cartes	FSU	2011 IEEE Electric Ship Technologies Symposium	1/12/2012

44	Yan Zhou	FSU	High Efficiency cascaded quasi-Z-source photovoltaic inverter module using eGaN FETS/ IEEE Energy Conversion Congress	9/17/2012
45	David Cartes	FSU	IEEE PES General Meeting	7/22/2012
46	Richard Feiock	FSU	Power and Energy Systems General Meeting	7/23/2012
47	Marilyn Barger	HCC-FLATE	Energy Education for Florida's Future Technician Workforce, 2012 Florida Energy Summit, Orlando, FL	8/16/2012
48	D. Parker	UCF/FSEC	Achieving Very High Efficiency and Net Zero Energy in a Hot Humid Climate in an Existing Home, FSEC, Cocoa, FL	2/1/2012
49	N. Muradov, N. Mohajeri, UCF/FSEC	UCF/FSEC	Chemochromic Hydrogen Leak Detectors for Safety Monitoring", DOE FHI Kick-off Meeting, Cocoa, FL	1/5/2011
50	K. Sutherland	UCF/FSEC	Cost-Effective, Energy Efficiency Residential Retrofit Measures for the Hot Humid Climate, IPed conference, Renewable Energy 101 for Housing and Community Development, Tampa, FL	March 4-25, 2011.
51	M. Rodgers, L.Bonville, H. Kunz, D. Slattery, J. Fenton	UCF/FSEC	Defining the correlation between membrane/MEA degradation rate from accelerated testing and lifetime, Fuel Cell Seminar, Orlando, FL	November 2011
52	A. T-Raissi, N. Muradov, A. Gujar, J. Baik, N. Garceau, S. Fenton, D. Block, E. Hinkamp	UCF/FSEC	Development and Costing of an Integrated Biomass Gasification/Fischer-Tropsch Synthesis Process for Co- production of Transportation Fuels, Heat and Power, FESC 2011 Summit, Gainesville, FL	9/1/2011
53	M. Rodgers, C. Huang, C. Odetola	UCF/FSEC	Development of electrocatalysts for PEM fuel cells by electrodeposition, Electrochemical Society Meeting, Boston, MA	October 2011
54	C. Huang, M. Rodgers (co-presented)	UCF/FSEC	Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cells Applications, FHI Kickoff Meeting at FSEC, Cocoa, FL	February 2011
55	B. Pearman, N. Mohajeri, A. Karakoti, D. Diaz, D. Slattery, L. Bonville, S. Saraf, S. Seal	UCF/FSEC	Effects of Cerium Oxide Nanoparticles on Ex-situ and In-situ Degradation of 1100EW Nafion Composite Membranes, Fuel Cell Seminar, Orlando, FL	11/3/2011
56	J. Cummings	UCF/FSEC	Energy Savings and Peak Demand Reduction of a SEER 21 Heat Pump vs. a SEER 13 Heat Pump with Attic and Indoor Duct Systems, Building America Meeting, Denver, CO.	Aug 2011
57	J. Cummings	UCF/FSEC	Energy Savings from Wind Washing Retrofits in Two- Story Homes, Building America Meeting, Denver, CO	Aug 2011
58	M. Rodgers, L. Bonville, D. Slattery	UCF/FSEC	Evaluation of the Durability of Polymer Electrolyte Membrane Fuel Cells containing Pt/C and Pt-Co/C Catalysts under Accelerated Testing, 2011 Annual Joint Symposium & Exhibition of the Florida Chapter of the AVS Science and Technology Society, Orlando, FL	March 2011
59	M. Rodgers, L. Bonville, D. Slattery	UCF/FSEC	Evaluation of the Durability of Polymer Electrolyte Membranes in Fuel Cells Containing Pt/C and Pt-Co/C Catalysts under Accelerated Testing", Electrochemical	October 2012

			Society Meeting, Boston, MA	
60	D. Block, A. T-Raissi, N. Muradov, N. Mohajeri	UCF/FSEC	Florida Hydrogen Initiative, project: Hydrogen Leak Detectors for Safety Monitoring", DOE Annual Merritt Review Meeting, Washington DC	May, 2011
61	N. Mohajeri, A. T- Raissi, J. Baik, UCF/FSEC	UCF/FSEC	FSEC's Irreversible Chemochromic Hydrogen Sensor Overview, Fuel Cell Seminar, Orlando, FL	11/3/2011
62	M. Rodgers	UCF/FSEC	Fuel Cell Research, Women's International Research Engineering Summit (WIRES), Cocoa, FL,	3/1/2011
63	N. Muradov, W. Rieks, P. Brooker	UCF/FSEC	High power density generators for unmanned undersea vehicle applications", ONR – Undersea Energy and Propulsion Workshop, Alexandria, VA	March 28- 29, 2012
64	N. Muradov, W. Rieks, P. Brooker	UCF/FSEC	High-energy density seawater-based hydrogen generators for marine applications", XIX World Hydrogen Energy Conf., Toronto, Canada (accepted as an oral presentation)	June 3-7, 2012
65	N. Mohajeri, P. Kubiak	UCF/FSEC	Improved Titania Supported Palladium Oxide Pigments for Irreversible Chemocromic Hydrogen Sensor, Fuel Cell Seminar, Orlando, FL	11/3/2011
66	J. Fenton, D. Slattery, H. Kunz, L. Bonville, N. Mohajeri, M. Rodgers, R. Brooker	UCF/FSEC	Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program, DOE Annual Merit Review Meeting, Washington, DC	5/9/2011
67	J. Cummings, C. Withers, E. Martin, N. Moyer	UCF/FSEC	Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes, US Department of Energy, EERE, Building Technologies Program. Peer Reviewed	February 2012
68	P. Brooker, D. Slattery, L. Bonville, J. Fenton	UCF/FSEC	Mechanism of Platinum-band Formation Mitigation with Heteropolyacid Electrodes, Abstract # 1208, 220th ECS Meeting, Boston, MA	10/9-14, 2011
69	N. Muradov, A.T- Raissi, G. Bokerman, E. Hinkamp	UCF/FSEC	Passive Chemochromic Hydrogen Leak Detectors for Safety Monitoring", XIX World Hydrogen Energy Conf., Toronto, Canada (accepted as a poster presentation)	June 3-7, 2012
70	P. Brooker, D. Slattery, L. Bonville, J. Fenton	UCF/FSEC	Platinum Band Formation Mitigation through Heteropolyacid Sublayers, Abstract # LRD42-1, Fuel Cell Seminar, Orlando, FL	10/31 to 11/3 2011
71	P. Brooker, L. Bonville, D. Slattery, J. Fenton (Presented by M. Rodgers)	UCF/FSEC	Platinum Band Formation Mitigation through Heteropolyacid Sublayers, Electrochemical Society Meeting, Boston, MA	October 2011
72	P. Brooker, D. Slattery, L. Bonville, J. Fenton	UCF/FSEC	Platinum Band Formation Mitigation through Heteropolyacid Sublayers, Oral Presentation, Abstract # LRD42-1, 2011 Fuel Cell Seminar, Orlando, FL, .	October 31- November 3 2011
73	A. Gujar, J. Baik, N. Garceau, E. Hinkamp, A. T-Raissi, N. Muradov	UCF/FSEC	Production of Syngas by Oxygen-blown Gasification of Biomass", XIX World Hydrogen Energy Conf., Toronto, Canada (accepted as an oral presentation)	June 3-7, 2012
74	C. Carlos	UCF/FSEC	Side-by-Side water heating results at Building America Meeting stakeholders meeting", Austin, TX	March 2012.
75	J. McIlvaine	UCF/FSEC	Technical Solutions for High Performance Habitat Homes, 2011 Affordable Comfort Institute National Conferences, San Francisco, CA	January 2011.

76	N. Moyerl	UCF/FSEC	Training Programs: Building and Maintaining Capacity, DOE National Weatherization Training Conference, New Orleans, LA	Dec 2011.
77	D. Danny	UCF/FSEC	User Motivation Pays Off! Evaluation of Energy Savings and Persistence from Residential Energy Demand Feedback Devices", World Sustainable Energy Days, Austria	2/1/2012
78	Jenshan Lin	UF	"From Far-Field Wireless Power Transmission to Near- Field Wireless Charging," presented at IEEE MTT-S Tainan Chapter in Taiwan	6/8/2012
79	Jon Stewart	UF	"Adventures in Alkene Reductases." Infinity Pharmaceuticals, Boston, MA	1/31/2012
80	J.F. Preston	UF	"Bacterial xylan-utilization regulons: Systems for coupling depolymerization of glucuronoxylans with assimilation and metabolism", DOE Joint Genome Users Meeting, Walnut Creek, CA	3/20/2012
81	Kelly Jordan	UF	"BiI3 Crystals for High Energy Resolution Gamma- Ray Spectroscopy "NNSA University-Industry Technical Interchange Conference Oakland, CA, USA, Dec 6-8, 2011. "An Overview of the Fukushima Nuclear Accident" Meeting of the Florida Chapter of the Health Physics Society (FCHPS) Gainesville, FL, Oct. 14, 2011.	10/14/2011
82	Jon Stewart	UF	"Expanding the Catalytic Repertoires of Alkene Reductases." Enzyme Engineering XXI, Vail, CO	9/19/2011
83	Jon Stewart	UF	"Flavoprotein Alkene Reductases for Chemical Synthesis." Society for Industrial Microbiology Annual Meeting, Washington, DC	8/16/2012
84	Kelly Jordan	UF	"Progress on Implementation of Digital Controls at the University of Florida Training Reactor," 2012 Annual Meeting of the National Organization of Test and Research Reactors. 2012.	9/26/2012
85	Lynn Sollenberger	UF	Are all elephantgrasses invasive? Characterization of natural populations and cultivated types of a bioenergy grass in Florida. In ASA/CSSA/SSSA, San Antonio, TX.	10/24/2011
86	E. J. Phlips	UF	Bailey Trump, E. J. Phlips, P. Pullammanappallil, and s. Svoronos. Development of a photosynthetic biorefinary employing a novel hypersaline, nitrogen fixing, hypersaline cyanobacterium. 2012 Florida Energy Summit, August 15-17, Gainesville, Florida.	8/15-17, 2012
87	Jeff Fedenko	UF	Biofuel potential of perennial grasses across Florida. 2012 Power Up Energy Exposition, Pensacola Beach, FL.	Spring 2012
88	Jeff Fedenko	UF	Biofuel potential of perennial grasses across Florida. In Florida Energy Summit. Orlando, FL.	8/15/2012
89	John Erickson	UF	Biomass yield and mineral composition of six potential perennial grass bioenergy crops for the Southeast. In ASA/CSSA/SSSA, San Antonio, TX.	10/22/2011
90	Pierce Jones	UF	Characterizing Energy Efficiency Using Utility and Appraiser Data; Hillsborough County Energy Workgroup; Tampa	10/13/2011

	1			
91	Gary Peter	UF	Commercial Production of Biofuels from Biomass, Florida Energy Summit, Orlando, FL, 2012	8/12/2012
92	Gary Peter	UF	Commercial Production of Terpene Biofuels in Pine. BIO's 9th Annual World Congress on Industrial Biotechnology and Bioprocessing, Orlando, FL, 2012	4/12/2012
93	Pierce Jones	UF	Community Design and Agricultural Urbanism; Envision Alachua; Gainesville	1/26/2012
94	Craig Miller	UF	Cost-Effective Weatherization in Hot, Humid Climates, National Weatherization Training Conference, New Orleans, LA	12/15/2011
95	Franky So	UF	Critical issues for OLED lighting, DOE Round Table Discussions, Washington DC	11/15/2011
96	Yolanda Lopez	UF	Cross-Taxa microsatellite primers transferability from pearl millet (Pennisetum glaucum (L.) R. Br.) to elephantgrass (Pennisetum purpureum Schumach.). Plant/Animal Genome Conf., San Diego, CA.	1/8/2012
97	Chaein Na	UF	Effect of harvest frequency and timing on perennial bioenergy grass yield and composition in Florida. Florida Energy Summit. Orlando, FL.	8/15/2012
98	Richard Stehle, Michael Bobek	UF	FESC Summitt / Steam Iron Process: Examination of Regenerative Cycling	9/28/2011
99	Nathan Rhodes	UF	FESC Summitt/ Kinetics investigation for solar syngas production	8/15/2012
100	Sabine Grunwald	UF	Grunwald S. 2012. Soil carbon variability across large landscapes. Soil and Water Science Research Forum, Gainesville, FL	9/7/2012
101	Sabine Grunwald	UF	Grunwald S., B. Hoover, and R. Patarasuk. 2012. Terra C and Pinemap data resources. Webinar series Pinemap project. Gainesville, FL	7/13/2012
102	Chaein Na	UF	Harvest frequency and timing affect perennial bioenergy grass yield and composition. In ASA/CSSA/SSSA, San Antonio, TX.	10/24/2012
103	Hoover B	UF	Hoover B., N.M. Knox, S. Grunwald, T.A. Martin, X. Xiong, P. Chaikaew, J. Kim, and B. Cao. 2011. Synthesis tools for carbon assessment in ecosystems. FESC Summit, University of Florida, Gainesville, FL	9/28- 29/2011
104	Hoover B	UF	Hoover B., S. Grunwald, T.A. Martin, G.M. Vasques, N.M. Knox, J. Kim, X. Xiong, P. Chaikaew, J. Adewopo, B. Cao and C.W. Ross. 2011. The Terrestrial Carbon (Terra C) Information System to facilitate carbon synthesis across heterogeneous landscapes No. 264-10. Symposia Spatial Predictions in Soils, Crops and Agro/Forest/Urban/Wetland Ecosystems, ASA- CSSA-SSSA Int. Meeting, San Antonio, TX	10/16- 19/2011
105	Kelly Jordan	UF	Implementation of Digital Up- grades to the UFTR Protection and Control Systems" 8th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technologies (NPIC&HMIT 2012), San Diego, CA, July 22-26, 2012.	7/23/2012

106	Pierce Jones	UF	Land Development & Transportation: A Case Study; UF/DCP Showcase; Gainesville	2/24/2012
107	Pierce Jones	UF	Land Development, Energy and Water: A Florida Case Study; 1000 Friends of Florida; Webinar	10/19/2011
108	Pierce Jones	UF	Land Development, Water and Energy: A Florida Case Study; Green Symposium; DeLand	4/13/2012
109	Pierce Jones	UF	Land Development, Water and Energy: A Florida Case Study; SJRWMD; Palatka	1/19/2012
110	Pierce Jones	UF	Land Development, Water and Energy: A Florida Case Study; Urban Forestry Institute; Oviedo	3/9/2012
111	Franky So	UF	Light extraction in OLEDs, invited seminar given at PPG Industry,	3/22/2012
112	Jeff Fedenko	UF	Lignin and fermentable sugars of perennial biofuel crops. In ASA/CSSA/SSSA, San Antonio, TX.	10/22/2011
113	Franky So	UF	OLED Displays and Lighting, invited seminar given at Taiwan Industrial Technology Research Institute	3/7/2012
114	Franky So	UF	OLED light extraction scheme, presentation given at the DOE workshop, Washington DC	11/12/2011
115	Franky So	UF	OLED lighting, invited seminar given at Taiwan National Tsinghua University,	3/8/2012
116	Gary Peter	UF	Past, Present and Future of Breeding for Rust Resistance in Slash Pine. IEG 40 Workshop – Integrating Fusiform Rust Research, Screening and Breeding, Asheville, NC, 2012	6/12/2012
117	Kelly Jordan	UF	Reactor Licensing Basis Optimization for Extensive Modifications," 2012 Annual Meeting of the National Organization of Test and Research Reactors. 2012.	9/26/2012
118	Franky So	UF	Recent Progress in Organic Solar Cells, University of Florida Energy Colloquium	12/12/2012
119	Franky So	UF	Recent progress in polymer solar cells, invited seminar given at Arizona State University	4/13/2012
120	Gary Peter	UF	Regulation of Genetically Engineered Forest Trees. 12th International Symposium on Biosafety of Genetically Modified Organisms, St. Louis, MO, 2012	9/12/2012
121	Chaein Na	UF	Seasonal changes in growth and morphological characteristics of bioenergy grasses in the USA Gulf Coast Region. In ASA/CSSA/SSSA, San Antonio, TX.	10/23/2012
122	Maria Silveira	UF	Short-term effects of grazing intensity and nitrogen fertilization on soil organic carbon under grazed pastures in the southeastern USA. In ASA/CSSA/SSSA, San Antonio, TX.	10/23/2012
123	Xiong X	UF	Xiong X., S. Grunwald, D.B. Myers, W.G. Harris, A. Stoppe and N.B. Comerford. 2011. Are soil carbon models transferable across distinct regions or scales in Florida? No. 262-8. Symposia Spatial Predictions in Soils, Crops and Agro/Forest/Urban/Wetland	10/16- 19/2011

			Ecosystems, ASA-CSSA-SSSA Int. Meeting, San Antonio, TX	
124	Ted Kury	UF/PURC	"Evidence-Driven Utility Policy with Regard to Storm Hardening Activities". Presented at National Regulatory Research Institute Teleseminar, August 27, 2012.	8/12/2012
125	Ted Kury	UF/PURC	"Execution and Leadership: Fulfilling Conflicting Responsibilities in Utility Regulation" Presented at the South African Regulators Conference, August 2012, Johannesburg, South Africa	8/12/2012
126	Ted Kury	UF/PURC	"Florida's Storm Response Initiatives". Presented to the Pennsylvania Energy Office, March, 2012.	3/12/2012
127	Ted Kury	UF/PURC	"New Tools for Regulators in Addressing the Impact of Renewable Energy and Energy Efficiency Policy" Presented at the South African Regulators Conference, August 2012, Johannesburg, South Africa	8/12/2012
128	Ted Kury	UF/PURC	"Price Effects of Independent System Operators in the United States Electricity Market." Presented at the Annual Meeting of the Allied Social Science Associations (AEA Section), January 2012, Chicago, Illinois.	1/12/2012
129	Ted Kury	UF/PURC	"Price Effects of Independent System Operators in the United States Electricity Market." Presented at the Florence School of Regulation Workshop on Performance in Network Industries, October 2011, Florence, Italy.	10/11/2012
130	Ted Kury	UF/PURC	"Status of Federal and State Energy Policy". Presented at the Energy in North Florida: Policy and Resiliency Workshop, August 13, 2012, Gainesville, Florida.	8/12/2012
131	Ted Kury	UF/PURC	"Status of U.S. Energy Policy and Outlook for the Future". Presented to the North American Energy Markets Association Annual Meeting, April, 2012, Ponte Vedra Beach, Florida.	4/12/2012
132	Ted Kury	UF/PURC	"The Impact of Transparent Wholesale Markets on Market Participation in the U.S. Electricity Industry" Presented at Pressing Issues in World Energy Policy, March 2012, Gainesville, Florida.	3/12/2012
133	Mark Jamison	UF/PURC	"The Regulator and Interconnection Standards: Four Rules for Renewables." Presented at Energy Security: Real or Imaginary?, CARILEC Renewable Energy Forum 2012, September 2012, Bermuda.	9/12/2012
134	Ted Kury	UF/PURC	"The Role of Renewable Energy Resources in Island Electric Systems." Presented at the 9th OOCUR Annual Conference, November 2011, Rockley, Christ Church, Barbados.	11/11/2012
135	Ted Kury	UF/PURC	"Washington's Energy Policy 'Leadership' and its Implications for Utilities and Customers." Presented at the Annual Meeting of the Southern Minnesota Municipal Power Agency, October 2011, Minneapolis, Minnesota.	10/11/2012
136	D. Dutta, C. Yang, B. Joseph, V. Bhethanabotla	USF	"Ag-Cu Bimetallic Nanoparticles for Metal Enhanced Luminescence (MEL)", AIChE Annual Meeting, Minneapolis, MN, Nov 2011.	11/1/2011

137	Chen, H., M.M. Rahman, D.Y. Goswami, E.K. Stefanakos	USF	"Optimizing energy conversion using organic Rankine cycles and supercritical Rankine cycles," in the Proceedings of the Proceedings of the ASME ESFuelCell 2011 Conference, Washington, D.C., August.	2011
138	Vasquez Padilla, R., Ramos, A.A., Demirkaya, G., Besarati, S., Goswami, D.Y., Rahman, M.M. and Stefanakos, E.K.	USF	"Performance Analysis of a Rankine-Goswami Combined Cycle," Proceedings of the ASME 2011 "ESFuelCell 2011" (5th International Conference on Energy Sustainability and 9th Fuel Cell Science Engineering and Conference), Washington, DC, August.	2011
139	Syed Ali Zeeshan Gardezi, John T Wolan, Babu Joseph	USF	Fischer Tropsch Synthesis via Bioderived Syngas, ACS Florida Annual Meeting and Exposition, Tampa, Florida, May 2012	5/1/2012
140	Sarina ErgasUdom, I., Halfhide, T., Gillie, B., Dalrymple, O., Zaribaf, B. H., Zhang, Q., Ergas, S.J.	USF	Harvesting algae grown on wastewater, Proc. 85th Annual Meeting of the Water Environment Federation (WEFTEC 12), Sept. 29-Oct. 3., New Orleans, LA.	9/1/2012
141	Nianthrini Balakrishnan, Babu Joseph, Venkat Bhethanabotla1 and D. Yogi Goswami	USF	The Role of Added Promoters In Reducing the Deactivation of Co Catalyst Used In Fischer Tropsch Synthesis, Paper 359f, AIChE Annual Meeting, Minneapolis, MN, Oct 2011.	10/1/2011
142	B. Mankidy, B. Joseph and V. Gupta	USF	"Colloidal Ag-Pt/TiO2 Nanocomposites for Photocatalysis", 2012 Annual TMS Meeting, Orlando, March 2012.	3/1/2012
143	Koiry, S.P., Krishnan, S., Ratnadurai, R., Goswami, D.Y., Stefanakos, E., and Bhansali, S.	USF	"Controlled ex-situ doping of electrochemically polymerized 5,10,15,20 tetrakis (4-hydroxyphenyl)- porpyrin (THPP) for hybrid switching circuits," in the Proceedings of the 220th ECS Meeting.	2011
144	D. L. Morel, C. S. Ferekides, K. Jayadevan and R. Anders	USF	"Effective Ga Incorporation for 2SSS CIGS Manufacturing", Proceedings of the 37th IEEE PV Specialist Conference, Seattle	7/3/2012
145	Alvi, F., Ram, M.K., Basayaka, P., Stefanakos, E., Goswami, Y., Hoff, A.M., and Kumar, A.	USF	"Electrochemical Supercapacitors Based on Graphene- conducting Polythiophenes Nanocomposite, ECS Symposium in the Proceedings of the MRS Fall Conference, Boston.	2011
146	Syed Ali Gardezi, and Babu Joseph	USF	"Experimental Investigation of Liquid Fuel Production From Derived Synthesis Gas Via Fischer-Tropsch Synthesis,", AIChE Annual Meeting, Pittsburg, PA, Nov 2012	11/1/2012
147	Syed Ali Gardezi, J. W. Wolan, B. Joseph, Y. Goswami	USF	"Fischer Tropsch Synthesis Via Biomass Derived Synthesis Gas," 2011 Florida Energy Systems Consortium Annual Summit, Gainesville, FL, Sept 2011	11/1/2011
148	Nianthrini Balakrishnan, Bijith Mankidy, Vinay Gupta, Babu Joseph and Venkat Bhethanabotla	USF	"Mechanistic Studies On the Size Effect of Cobalt Nanoparticles On CO Oxidation,", AIChE Annual Meeting, Pittsburg, PA, Nov 2012	11/1/2012
149	Syed Ali Gardezi, and Babu Joseph	USF	"Modeling the Start-up Phase of Fischer Tropsch Synthesis in a Fixed Bed Reactor: Effect of Pore Filling and Heat Transfer Through the Catalyst Bed,", AIChE Annual Meeting, Pittsburg, PA, Nov 2012	11/1/2012

150	Demirkaya, G., Besarati, S.M., Vasquez Padilla, R., Ramos, A.A., Rahman, M.M., Goswami, D.Y., and Stefanaksos, E.	USF	"Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Mid-Grade Heat Sources," in the Proceedings of the ASME ESFuelCell 2011 Conference, Washington, D.C., August.	2011
151	B. Mankidy, B. Joseph and V. Gupta	USF	"Towards Efficient Co/SiO2 FTS Catalysts: Study of Cobalt Nanoparticle Size Effects on Reaction Kinetics", 2011 Florida Energy Systems Consortium Annual Summit, Gainesville, FL, Sept 2011.	11/1/2011
152	Lee Stefanakos/Yogi Goswami	USF	Abutayeh, M., Goswami, D.Y., and Stefanakos, E. (2011) "Solar thermal power plant simulation, in the Proceedings of the AIChE National Meeting, Minneapolis, MN, October.	2011
153	Debosruti Dutta, Chi Ta Yang, Babu Joseph and Venkat R. Bhethanabotla	USF	Ag-Cu Bimetallic Nanoparticles for Metal Enhanced Luminescence (MEL), Paper 591a, AIChE Annual Meeting, Minneapolis, MN, Oct 2011.	10/1/2011
154	Stan R. Russell	USF	AIA Florida Annual Conference- Naples Florida- summer 2011	2011
155	Stan R. Russell	USF	AIA Tampa Bay Designer's Luncheon Lecture Series- fall 2010- 2011 Solar Decathlon - FLeX House	2011
156	Bijith Mankidy, Babu Joseph, Vinay Gupta	USF	AIChE Annual Meeting, Pittsburg, PA, Nov 2012 Enhancing Photocatalytic Reduction of CO2 by Using Bimetallic Co-Catalyst and Plasmonic Nanoparticles	11/1/2012
157	Syed Ali Gardezi, Babu Joseph	USF	AIChE Annual Meeting, Pittsburg, PA, Nov 2012 ; Modeling the Start-up Phase of Fischer Tropsch Synthesis in a Fixed Bed Reactor: Effect of Pore Filling and Heat Transfer Through the Catalyst Bed	11/1/2012
158	Syed Ali Zeeshan Gardezi, John T Wolan, Babu Joseph	USF	An Integrated Approach to the preparation of effective Catalysts for Biomass-to-Liquid (BTL) processes, AIChE Central Florida International Conference, Clearwater, FL, June, 2012	6/1/2012
159	Stan R. Russell	USF	ASME Tampa Bay Annual Meeting- FLeX House- summer 2011	2011
160	Babu Joseph	USF	Bijith Mankidy, Nianthrini Balakrishnan, Babu Joseph, ; Vinay Gupta, , AIChE Annual Meeting, Pittsburg, PA, Nov 2012; Size Effect of Cobalt-Oxide Nanoparticles for CO Oxidation: An Experimental and Computational Study	11/1/2012
161	Babu Joseph	USF	Chi-Ta Yang, Nianthrini Balakrishnan, Babu Joseph and Venkat Bhethanabotla, AIChE Annual Meeting, Pittsburg, PA, Nov 2012	11/1/2012
162	Stan R. Russell	USF	CSI Luncheon - FLeX House- spring 2011	2011
163	Sarina Ergas	USF	Dalrymple, O.K., Halfhide, T., Udom, I., Gilles, B, Wolan, J., Zhang, Q., Ergas, S.J. (2011) A preliminary estimation of the algal feedstock production potential of Tampa Bay utilizing CO2 emissions and wastewater effluent, Proc. Florida Energy Systems Consortium (FESC) Summit, Sept. 26-27, 2011, Gainesville, FL.	9/1/2011

164	Lee Stefanakos/Yogi Goswami	USF	Demirocak, D.E., Kuravi, S., Ram, J.K., Jotshi, C.K., Srinivasan, S., Kumar, A., Goswami, Y. and Stefanakos, E. (2011) "Investigation of polyaniline nanocomposites and cross-linked polyaniline for hydrogen storage," Proceedings of the 2011 Advances in Materials Processing Technologies (AMPT) Conference, July 2011, Istanbul, Turkey.	2011
165	Lee Stefanakos/Yogi Goswami	USF	Demirocak, D.E., Kuravi, S., Ram, M.K., Jotshi, C.K., Kumar, A.D., Goswami, Y., and Stefanakos, E.K. (2011) "Surfactant enriched polyaniline for hydrogen storage," in the Proceedings of the ASME 2011 5th International Conference on Energy Sustainability and 9th Fuel Cell Science, Engineering and Technology Conference (ESFuelCell 2011), Aug, 011, Washington, DC	2011
166	Babu Joseph	USF	Devin Walker, Syed Ali Gardezi, J. Kuhn and B. Joseph, Converting Trash to Cash : Using Landfill Gas to produce liquid fuels, AIChE Central Florida International Conference, Clearwater, FL, June 2012	6/1/2012
167	Stan R. Russell	USF	Eco House Symposium- Kanagawa University, Kanagawa Japan- summer 2011	2011
168	Syed Ali Gardezi, Babu Joseph, and John T. Wolan	USF	Fischer Tropsch Synthesis Via Biomass Derived Synthesis Gas, , AIChE Annual Meeting, Minneapolis, MN, Oct 2011. Paper 231c	10/1/2011
169	Syed Ali Zeeshan Gardezi, Babu Joseph, and John T Wolan	USF	Fischer Tropsch Synthesis via Biomass Derived Synthesis Gas, FESC Energy Summit, July 2012, Orlando.	7/1/2012
170	Syed Ali Gardezi and Babu Joseph	USF	Fischer-Tropsch Synthesis via Biomass derived Synthesis Gas," 2011 College of Engineering Research Day, USF, Tampa, Dec 2011. (Best Poster Award in Poster Competition)	12/1/2011
171	Sarina Ergas	USF	 Halfhide, T., Trimmer, J., Pinilla, M., Bosshart, W., Zhang, Q., Wolan, J., Main, K., Ergas, S. J. (2011) Reducing Carbon and Nutrient Impacts of Aquaculture Using an Algal Photo-bioreactor Production System, Proc. International Water Association Leading Edge Technologies Conference, June 6-10, Amsterdam, The Netherlands. 	6/1/2011
172	Nianthrini Balakrishnan, Babu Joseph, Venkat R. Bhethanabotla1 and D. Yogi Goswami	USF	Influence of Pt Promoter On Fischer-Tropsch Initiation Pathways Over Cobalt Catalysts, paper 487a, AIChE Annual Meeting, Minneapolis, MN, Oct 2011.	10/1/2011
173	Bijith Mankidy, Babu Joseph, Vinay Gupta	USF	In-Situ FTIR Spectroscopy to Study the Size Effect of Cobalt Nanoparticles On Carbon Monoxide Oxidation, Paper 108e, AIChE Annual Meeting, Minneapolis, MN, Oct 2011.	10/1/2011
174	Robert Weisberg	USF	Invited speaker at the CMS Eminent Scholars Lecture series in April 2011.	4/1/2011
175	Babu Joseph	USF	Justin Stottlemyer, and Babu Joseph, Density Functional Theory Studies of Co Catalysts and Reaction Mechanisms for Fischer-Tropsch Synthesis, 2011 College of Engineering Research Day, USF, Tampa, Dec 2011. (Best Poster Award in Poster Competition)	12/1/2011

176	Lee Stefanakos/Yogi Goswami	USF	Kuravi, S., Trahan, J., Goswami, Y., Jotshi, C., Stefanakos, E., Goel, N. (2012) "Investigation of a high temperature packed bed sensible heat thermal energy storage system with large sized elements," Proceedings of the ASME 202 International Mechanical Engineering Congress and Exposition (IMECE 2012), November, 2012, Houston.	2012
177	Z. Miao	USF	L. Xu, Z. Miao and L. Fan, "Control of a back-to-back VSC system from grid-connected to islanded mode in microgrids," in Proc. of IEEE Energy Tech, May 2011	2011
178	Z. Miao	USF	L. Xu, Z. Miao and L. Fan, "Control of a battery system to improve operation of a microgrid," IEEE PES General Meeting, 2012.	2012
179	Z. Miao	USF	L. Xu, Z. Miao and L. Fan, "Coordinated Control of a Solar and Battery System in a Microgrid," IEEE T&D meeting, 2012.	2012
180	Lee Stefanakos/Yogi Goswami	USF	Li, C., Abutayeh, M., Goswami, Y., and Stefanakos, E. (2011) "Seawater Desalination using Solar Energy, Proceedings of the Florida Section of the AWWA Regional Conference, Orlando, November.	2011
181	Nathan Crane	USF	Liberti, C., and Crane, N. B., "Investigation of Surface Tension Effects of a Water-Hexadecane Interface on Silicon Microparts," ASME 2011 International Mechanical Engineering Congress & Exposition November 11-18, 2011, Denver, CO	11/1/2011
182	Yogi Goswami	USF	M. Celestin, S. Koiry, S, Krishnan, Y. Goswami, E. Stefanakos, "Metal Thin-film Roughness Mitigation Through Thermal Annealing for Self-Assembled Monolyaer Growth" USF Research Day, 2011.	2011
183	Babu Joseph	USF	María J. Pinilla, Babu Joseph, Qiong Zhang, "Comparative Life Cycle Assessment of Lignocellosic Biomass Conversion into Different Energy Products, 2011 Florida Energy Systems Consortium Annual Summit, Gainesville, FL, Sept 2011	11/1/2011
184	Babu Joseph	USF	María J. Pinilla, Babu Joseph, Qiong Zhang, " Comparative Life Cycle Assessment of Biofuels and Electricity Production, "2011 Florida Energy Systems Consortium Annual Summit, Gainesville, FL, Sept 2011	11/1/2011
185	Babu Joseph	USF	Matt Wetherington and Babu Joseph . Cost Models for a Biomass Based Transportation Fuels Plant. Florida Energy Systems Consortium Annual Summit. University of Central Florida, Orlando, Sept 2010.	9/1/2010
186	Syed Ali Gardezi, Babu Joseph, and John T. Wolan	USF	Modeling the Start-up Phase of Fischer Tropsch Synthesis In a Fixed Bed Reactor: Strategizing the Optimum Operation, AIChE Annual Meeting, Minneapolis, MN, Oct 2011. Paper 312a,	10/1/2011
187	Babu Joseph	USF	N. Balakrishanan, B. Joseph, V. Bhethanabotla, Y. Goswami, "Influence of Pt promoter on CO activation pathway", 2011 Florida Energy Systems Consortium Annual Summit, Gainesville, FL, Sept 2011	9/1/2011
188	Lee Stefanakos/Yogi Goswami	USF	 Pendyala, S., Sridharan, P., Kuravi, S., Jotshi, C.K., Ram, M.K., Rahman, R., Stefanakos, E., Goswami, D.Y. (2012) "Macroencapsulation of sodium nitrate for thermal energy storage in solar thermal power," Proceedings of the ASME 2012 6th Int'l Conf. on 	7/4/2012

			Energy Sustainability and 10th Fuel Cell Science, Engineering and Technology Conf. (ESFuelCell 2012), July 23-26, 2012, San Diego, CA.	
189	Lee Stefanakos/Yogi Goswami	USF	Ramos, A.A., Kuravi, S., Rahman, M.M., Goswami, D.Y., Stefanakos, E.K., Gonzalez-Aguilar, J., and Romero, M. (2011) "Parametric study of a phase change thermal storage module," in the Proceedings of the ISES Solar World Congress, pp. 1699-1707, Kassel, Germany(Aug-Sept.).	2011
190	Stan R. Russell	USF	Reaching Zero Energy in Florida's Hot Humid Climate, ARCC 2011 CONSIDERING RESEARCH: Reflecting upon current themes in Architectural Research, Detroit MI, spring 2011,	2011
191	Watson, S., Halfhide, T., Trimmer, J., Zhang, Q., Wolan, J., Main, K., Ergas, S.J.	USF	Reducing the Nutrient Impacts of Aquaculture Through the Use of an Algal Photobioreactor Production System, Proc. 2011 WEF Nutrient Recovery and Management Conference, Jan. 9-12, 2011, Miami, FL.	1/1/2011
192	Stan R. Russell	USF	Russell S.R., Weston M., Goswami Y., Doll M. Flex House, ASME 2011 5th International Conference on Energy Sustainability & 9th Fuel Cell Science, Engineering and Technology Conference, Washington D.C. Summer 2011	2011
193	Yogi Goswami	USF	Russell, S., Goswami, Y., Weston, M., and Doll, M. (2011) "Flex House," in the Proceedings of the ASME ESFuelCell 2011 Conference, Washington, D.C., August.	2011
194	Babu Joseph	USF	S.A. Ali, B. Joseph, J.W. Wolan, "Fisher-Tropsch Synthesis of Biomass derived syngas", AIChE Annual Meeting, Minneapolis, MN, Nov 2011.	11/1/2011
195	Lee Stefanakos/Yogi Goswami	USF	Stefanakos, E. K. (2012), "Solar Power Plants and Energy Storage for Global Energy Needs", IFNA World Congress - Energy, Athens, Greece, June 25- July 1, 2012	6/25- 7/1/2012
196	Nianthrini Balakrishnan, Babu Joseph, ; Venkat Bhethanabotla	USF	The Role of Added Promoters in Reducing the Deactivation of Co Catalyst Used in Fischer Tropsch Synthesis,, AIChE Annual Meeting, Pittsburgh, PA Nov 2012	11/1/2012
197	Bijith D. Mankidy, Nianthrini Balakrishnan, Babu Joseph and Vinay K. Gupta,	USF	Towards efficient FTS catalysts: Size effect of cobalt oxide nanoparticle on reaction kinetics, FESC Energy Summit, July 2012, Orlando, Florida.	7/1/2012
198	Bijith Mankidy, Vinay Gupta and Babu Joseph,	USF	Towards Efficient Synthetic Hydrocarbon Fuel Production: Role of Cobalt Nanoparticle Size", Presented at the 2011 College of Engineering Research Day, USF, Tampa, Dec 2011. (Honorable Mention Award in Poster Competition)	12/1/2011
199	Lee Stefanakos/Yogi Goswami	USF	Trahan, J., Kuravi, S., Goswami, D.Y., Rahman, M.M., Stefanakos, E. (2012) "Thermal characterization of high temperature inorganic phase change materials for thermal energy storage applications, Proceedings of the ASME 2012 6th Int'l Conf. on Energy Sustainability and 10th Fuel Cell Science, Engineering and Technology Conf. (ESFuelCell 2012), July 23-26, 2012, San Diego, CA.	7/23- 26/2012

200	Sarina Ergas	USF	Udom, I., Halfhide, T., Trimmer, J., Gillie, B. Wolan, J., Ergas, S.J. (2011) Nutrient management using an algal photobioreactor production system, Proc. Association of Environmental Engineering and Science Professors (AEESP) Research and Education Conference, Tampa, FL, July 10-12, 2011.	7/1/2011
201	Sarina Ergas	USF	Udom, I., Wolan, Ergas, S.J. (2011) Harvesting Chlorella sp. for Biofuel Production Using Flocculants, Proc. 1st International Conference on Algal Biomass, Biofuels and Bioproducts, July 17-20, St Louis MO.	7/1/2011
202	Lee Stefanakos/Yogi Goswami	USF	Vidhi, R., Goswami, D.Y., Chen, H., Stefanakos, E. and Kuravi, S. (2011) "Study of supercritical carbon dioxide power cycle for low grade heat conversion," Proceedings of the Supercritical CO2 Power Cycle Symposium, Denver, Colorado, May.	5/1/2011

5. Invention Disclosures & Patents By All SUS Faculty in Energy Area

During Oct. 1, 2011 to Sep 30, 2012 Period (Back to top)

Total: 59

#	Faculty	University	Disclosure / Patent #	Title
1	Juan Ordonez	FSU	12-204	Solar Collection Enhancement by Volumetric Absorption
2	Jim Zheng	FSU	12-206	Metal-Air Flow Batteries Using Water Based Electrolyte
3	Anjaneyulu Krothapalli	FSU	12-208	Multiple Parabolic Trough Solar Collector Having a Focus-tracking Pipe Array
4	Juan Ordonez	FSU	13-026	Alkaline Membrane Fuel Cell (AMFC)
5	Liu and Li	FSU	13-045	A Single Phase Fuel Cell Power Conditioning System with Minimized DC Capacitor
6	Farrukh Alvi	FSU		Microjet Control For Flow And Noise Reduction In Automotive Applications
7	Crook et al	FSU		Cryogenic Heat Sink for Helium Gas Cooled Superconducting Power Devices
8	Rick Meeker	FSU	13-065	Distributed Resources Intelligent Voltage and Energy Regulation (DRIVER)
9	Winger	FSU	U.S. Patent No. 8,235,035 Issued 8/7/2012	Improvements to the Inflatable Trough Type Solar Concentrator aka Solar Sausage
10	Nahid Mohajari, Paul Brooker,	UCF/FSEC	Serial No. 61/526,873	Chemochromic Membranes for Membrane Defect Detection
11	Paul Brooker, Len Bonville	UCF/FSEC	Serial No. 61/5445,709	Electroactive species in layer between electrode and membrane for fuel cells
12	Nazim Muradov, Frank Smith, Ali T-Raissi	UCF/FSEC	U. S. Patent 8,147,765, 4/3/12	Apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons
13	Nazim Muradov	UCF/FSEC	US Patent 8,119,198; 2/21/12	Three-dimensional carbon fibers and method and apparatus for their production
14	Nazim Muradov	UCF/FSEC	US Patent 8,003,055, 8/23/11	Visual hydrogen detector with variable reversibility
15	Gary Bokerman, Ali T- Raissi, Nazim Muradov	UCF/FSEC	US Patent 8,048,384, 11/1/11	Chemochromic hydrogen sensors
16	Nazim Muradov	UCF/FSEC	US Patent 8,002,854	Thermocatalytic Process for CO ₂ -free Production of Hydrogen and Carbon from Hydrocarbons
17	Clovis A. Linkous	UCF	UCF ID# 30383, 30092	Photo-catalytic Surface Agent
18	Edward J. Philips; Bailey Trump	UF	14197	Novel New Algae Species for Biofuel Production

	Coop W. Varla Materia			1
19	Sean W. York; Michael Todd Mullinix; James Y. Lee; Huabao Zheng; Lorraine P. Yomano; Lonnie O. Ingram; Kelnatham T. Shanmugam; Xuan Wang	UF	14358	Combining Genetic Traits for Furfural Tolerance
20	Wayne Nicholson; Rafael Rodrigues Oliveira	UF	14379	Bacterial Strain for High-Level Production of 2,3-butanediol From Biomass
21	Jiangeng Xue; Ronald Keith Castellano	UF	13955	A Modular Supramolecular Approach to Organic Photovoltaic Devices
22	Kevin S. Jones; Nicholas G. Rudawski	UF	13963	Ion Beam Mixing for Improved Li Ion Batteries
23	Parvesh Sharma; Brij M. Moudgil; Gary W. Scheiffele; Spyros A. Svoronos; Ajoy K. Saha; Kevin William Powers; Jiaqing Zhou	UF	14105	Process For Making Precision Core-shell Quantum Dots by Hydrothermal Flow Manufacturing
24	Wallace Gregory Sawyer; Brandon Alexander Krick; Jeffrey John Ewin; Angela A. Pitenis	UF	14178	Surface Patterning on Hydrodynamic Interfaces to Mitigate Break Loose Friction
25	Jiangeng Xue	UF	14235	Quantum-Dot Based Hybrid LED Lighting Devices
26	Sunghwan Yeo; Lihao Ge; Edward McKenna; Ronald Howard Baney; Ghatu Subhash; James S. Tulenko	UF	14238	Urania Based Nuclear Fuel Containing Diamond Particles with Greatly Enhanced Thermal Conductivity (combined with 14243 and 14244)
27	Ghatu Subhash; James S. Tulenko; Ronald Howard Baney	UF	14243	Rapid Consolidation of UO2 Powder Using Spark Plasma Sintering (combined with 14238 and 14244)
28	Ghatu Subhash; James S. Tulenko; Ronald Howard Baney	UF	14244	Sintering of High Density and High Thermal Conductivity UO2+SiC Composites Using SPS (combined with 14238 and 14243)
29	Saeed Moghaddam	UF	13948	Thin Film-based Compact Absorption Cooling System
30	Franky So	UF	Disclosed 7/5/12; US Provisional Patent Application filed 10/1/12	IR focal plane array
31	Franky So	UF	Disclosed 8/30/12; US Provisional Patent Application filed 10/1/12	UV photodetectors
32	Do Young Kim; Franky So	UF	14038	RGB Pixelated IR Driven OLED Display
33	Do Young Kim; Franky So	UF	14039	Infrared Sensitive OLED with Electrically Conductive Optical Reflector Between IR Sensitive Part and OLED Part (COMB W#14041)

34	Do Young Kim; Franky So	UF	14040	AMLCD with a Reflective Polarizer for IR Driven OLED Display (COMB W14038)
35	Do Young Kim; Franky So	UF	14041	Enhancement in a Color Gamut Using Weak Cavity in IR Driven OLED Display (COMB W/14039)
36	Do Young Kim; Franky So	UF	14042	RGB Full Color IR Driven OLED Display Using a Non-pixelated IR Sensitive OLED (COMB W/14038)
37	Do Young Kim; Franky So	UF	14043	IR Sensitive OLED Fabricated Directly on AMLCD with IR Backlight and Without Color Filters for IR Driven Display (COMB W/14038)
38	Do Young Kim; Franky So	UF	14044	Thin Film Encapsulation for IR driven OLED Display (COMB W/14038)
39	Do Young Kim; Franky So	UF	14046	The Position of a Black Matrix for an Optical Design in an IR Driven OLED Display (COMB W/14038)
40	Franky So; Womhoe Koo	UF	14276	White Organic Light Emitting Diode
41	Franky So; Jesse Robert Manders; Do Young Kim; Jiho Ryu; Jae Woong Lee	UF	14297	Solution-Processed Ultraviolet Light Detector Based on P-n Junctions of Metal Oxides
42	Franky So; Wonhoe Koo	UF	14388	Blur-Free Light Extraction OLED
43	Tao Li; Chao Li	UF	14053	Solar Energy based Microprocessor Power Management (COMB W/14056) v
44	Tao Li; Chao Li	UF	14056	Methods/Systems for Optimizing Server Clusters on Renewable Energy Supply (COMB W/14053)
45	Saeed Moghaddam; Henry Angelo Sodano; Abhilash Paneri; Yumseon Heo	UF	14304	Graphene-based Proton Exchange Membrane
46	Mithcell Austin McCarthy; Andrew Garbiel Rinzler; Bo Liu	UF	14361	Ambipolar Carbon Nanotube Enabled Vertical Field Effect Transistors
47	Mithcell Austin McCarthy; Andrew Garbiel Rinzler; Bo Liu	UF	14374	Pre-Adjusted Scan Time Averaging Drive Scheme for AMOLED IR Drop Compensation
48	James F. Preston, Virginia Chow, Guang Nong, John D. Rice, Franz J. St. John	UF	Issued as US Patent No. 8,119,397 2/21/2012	Xylan-Utilization Regulon for Efficient Bioprocessing of Hemicellulose and Uses Thereof.
49	Jenshan Lin and students	UF	US Patent 8,232,793	Method and apparatus of load detection for a planar wireless power system, July 31, 2012.
50	Jon Stewart	UF	U.S. Provisional Patent application 61683497 filed on 15 August 2012	Alkene Reductase With Altered Stereoselectivity and Uses Thereof
51	Babu Joseph, J. Kuhn, Ali Gardezi, T. Roberge, Devin Walker	USF	Disclosed 9/2012	A process for converting landfill gas to liquid fuels

52	Babu Joseph and John Kuhn	USF	Disclosed 10/2012	A hybrid catalyst for simultaneous steam reforming of methane and Fischer Tropsch Synthesis
53	Babu Joseph et al	USF	Patent application filed no. 61/703428, Sept 20, 2012	Systems and Methods for producing liquid fuels
54	Babu Joseph et al	USF	Disclosure filed, Sept 30, 2012	A hybrid catalyst system for simultaneous reforming and liquefaction of methane.
55	Norma Alcantar, et al.	USF	<u>US Patent No.</u> <u>8,034,302</u>	Transparent conducting composites (TTCs) for creating chemically active surfaces
56	Srinivasan, Jurczyk, Goswami, Stefanakos	Tuskegee Univ., USF	US Patent No. 8,153,020	Methods and Processes for Producing Complex Hydrides Exhibiting High Hydrogen Storage Capacity and Fast Sorption Kinetics at Moderate Temperatures
57	Stefanakos, E.K., Goswami, Y., and Bhansali, S	USF, FIU	US Patent No. 8,115,638 B1	Rectenna Solar Energy Harvester
58	Goswami, D.Y., Lee, M.S., Kothurkar, N.K., and Stefanakos, E.K.	USF	US Patent No. 7,896,953 B1	Practical Method of CO ₂ Sequestration
59	Babu Joseph et al	USF	Patent application filed, 2010.	A cobalt Egg-shell catalyst for producing liquid fuels from syngas

6. <u>Technologies Licensed and Revenues Received By All SUS Faculty</u>

#	Faculty	University	Title	Revenues Received
1		FSU	High energy super capacitors	\$0
2		UCF	Efficient Green Production of Value Added Products	\$0
3	Richard Blair	UCF	Solid Acid Catalyzed Hydrolysis of Cellulosic Materials	\$0
4	Clovis A. Linkous	UCF	Photo-catalytic Surface Agent (Option Agreement)	\$0
5	Nazim Muradov	UCF	Thermocatalytic process for CO2-free production of hydrogen and carbon from hydrocarbon (Brokerage Agreement)	\$0
6	Keelnatham T. Shammugam; Lonnie O. Ingram; Qingzhao Wang	UF	Engineering of Thermotolerant Bacillus Coagulans for Production of D(-)-Lactic Acid	\$2,500
7	Lonnie Ingram; Xeeli Zhang; Xuan Wang; Keelnatham Shanmugam	UF	Chemical Mechanical Fabrication (CMF) for Forming Non-planar Surfaces	\$2,500
8	Arthur Teixeira; David Chynoweth; Patrick Haley; John Owens	UF	Flooded Densified Leachbed Anaerobic Digestion	\$2,500
9	Deepika Singh; Rajiv Singh; Anul Arjunan; Dibakar Das; Abhudaya Mishra; Tanjore Jayaraman	UF	Polishing of Silicon Carbide Comprising Surfaces	\$8,413
10	Eric Wachsman; Francesco Basoli; Silvia Licoccia; Enrico Traversa	UF	Fabrication of Dual Structure Ceramics by a Single Step Process For SOFCs Applications	\$1,000
11	Eric Wachasman; Bryan Blackburn	UF	Multifunctional Gas Sensor Array with Improved Selectivity	\$32,500
12	Eric Wachsman; Bryan Blackburn; Fredrick Van Assche	UF	Electric-Field Enhanced Performance in Catalysis and Solid-State Devices Involving Gases	\$32,500
13	Franky So; Wonhoe Koo	UF	Buckled Organic Light Emitting Diode for Light Extraction	\$0
14	Andrew Rinzler; Rajib Das	UF	Hydrogen Oxidation and Generation Over Single Wall Carbon Nanotube Films (COMB W/13920)	\$0
15	John Reynolds; Aubrey Dyer; Andrew Rinzler	UF	Multiply Controlled Electrochromic Device	\$0

During Oct. 1, 2011 to Sep 30, 2012 Period (Back to top)

16	Bhabendra Pradhan; Franky So; Do Young Kim	UF	Solid State Lighting Window by Transparent One Side Emitting OLED	\$0			
17	A. Dyer; J. Reynolds; A. Rinzler	UF	Infrared-modulating Electroactive Devices with Visible Region Transparency (SWNT) (COMB W/#13245)	\$0			
18	A. Dyer; J. Reynolds	UF	Interdigitated Electrode Dual Electroemissive/Electrochromic Devices	\$0			
19	J. Reynolds	UF	Dual Light Emitting and Electrochromic Devices for Variable Ambient Light Environments	\$0			
20	F. So	UF	Microcavity OLED Devices Integrated with Phosphors for Solid State Lighting	\$0			
21	F. So	UF	Microcavity OLEDs for Lighting	\$0			
22	C. Amb; P. Beaujuge; J. Reynolds; F. So; J. Subbiah	UF	Interlayer for Organic Solar Cells (COMB 13069)	\$0			
23	Financial Agent 1042-S Processing; P. Beaujuge; S. Ellinger; J. Reynolds	UF	Green Soluble Conjugated Polymers with High Charge Carrier Mobilities	\$0			
24	Financial Agent 1042-S Processing; C. Amb; P. Beaujuge; S. Ellinger; J. Reynolds	UF	Black Soluble Conjugated Polymers with High Charge Carrier Mobilities	\$0			
25	P. Beaujuge; J. Reynolds; F. So; J. Subbiah	UF	Earth-toned Photovoltaic Devices	\$0			
	Total Revenues Received\$81,913						

7. <u>Collaborations with Other Postsecondary Institutions By FESC Faculty</u>

During Oct. 1, 2011 to Sep 30, 2012 Period (Back to top)

#	Faculty	University	Description of Collaboration	Name of Institution
1	Dr. Howard Hanson	FAU	Current Resource Modelling/Simul.	Dr. Eric Chassignet - FSU - COAPS
2	Dr. Howard Hanson	FAU	Sea Water Hydrolysis	Dr. Ali Raisi - UCF - FSEC
3	Susan Skemp, Caitlin Slezycki	FAU	Power Systems Management	Dr. Steiner Dale, Dr. Rick Meeker - FSU - CAPS
4	Dr. Howard Hanson	FAU	NSF Proposal - Array Design/Control	Dr. Darris White - Embry Riddle Aeronautical Univ.
5	Dr. Howard Hanson	FAU	Cooperative Research and Development Agreement (CRADA)	US DOE - NREL
6	Susan Skemp	FAU	Research and Testing	Dr. David Lane - Heriot-Watt University, UK
7	Susan Skemp and Dr. Howard Hanson	FAU	Research and Testing	Dr. Henry Jeffrey - U. of Edinburgh, UK
8	Dr. Howard Hanson & Susan Skemp	FAU	Ocean Research and Standards	Dr. Robert Paasch & Dr. Meleah Ashford - Northwest National Marine Renewable Energy Center - Oregon State University
9	Dr. Jim Van Zweiten and Dr. Howard Hanson	FAU	OTEC Research and Standards	Dr. Luis Vega - Univ. of Hawaii, Nat. Marine Renewable Energy Center
10	Dr. Howard Hanson & Susan Skemp	FAU	Ocean Research and Standards	Dr. Brian Polayge - Northwest National Marine Renewable Energy Center - University of Washington
11	Susan Skemp, Gabriel Alsenas, Dr. James VanZweiten	FAU	Ocean current turbine power plant modeling/simulation.	Dr. Nikolas Xiros - Virginia Polytechnic Institute and State College
12	C. Weatherford,	FAMU	Collaborations on fusion research	West Virginia University, Auburn University, and Wisconsin University
13	David Cartes	FSU	Advanced Manufacturing Grant	TCC, FAMU
14	Marilyn Barger and Nina Stokes	HCC- FLATE	As part of the Energy Systems Technician 2 Project Team, working on creation and implementation of a new, Energy Efficiency specialization for the existing Engineering Technology Degree.	Tallahassee Community College, Florida State College at Jacksonville, Brevard Community College.

15	Gary Peter	UF	Southern Pine Research	Auburn, Alcorn St., University of California, Berkeley, University of Georgia, University of Mississippi, North Carolina State University, Texas A & M, Oklahoma State University, Virginia State, North Carolina A & M, National Renewable Energy Lab, Virginia Polytechnical University,
16	David Hahn, James Klausner, Renwei Mei	UF	Collaborations on solar thermal fuels	University of Vorarlberg - Austria
17	David Hahn, James Klausner, Renwei Mei	UF	Collaborations on solar thermal fuels	Sandia National Laboratories
18	Franky So	UF	Collaborations on PV research	Georgia Tech
19	Franky So	UF	Collaborations on PV research	Technical University of Denmark
20	Franky So	UF	Collaborations on PV research	Hong Kong Baptist University
21	Franky So	UF	Collaborations on OLED research	Yamagata University, Japan
22	Jacob Chung	UF	Biomass gasification integrated with a ceramic membrane for hydrogen production	National United University and National Chung Hsing University in Taiwan
23	K. Ruppert	UF	Collaborations as reviewers for fact sheets	Florida State University and University of South Florida
24	Babu Joseph	USF	Solar Assisted Biomass Conversion	UF (College of Agriculture)
25	Babu Joseph	USF	Solar Assisted Biomass Conversion	US DOE - NREL
26	Babu Joseph	USF	Solar Assisted Biomass Conversion	US DOE - ORNL
27	Babu Joseph	USF	Biomass R&D Initiative	US Forest Service
28	Don Morel	USF	Partnering to submit NSF Center proposal	University of Minnesota
29	Stan Russell	USF	Zero Energy Home Learning Center	USF-School of architecture, College of Engineering, College of Mass Communications, School of Business
30	Stan Russell	USF	Zero Energy Home Learning Center	FSU-College of Engineering
31	Stan Russell	USF	Zero Energy Home Learning Center	UF- Department of Interior Design
32	Stan Russell	USF	Zero Energy Home Learning Center	UF-Rinker School of Building Construction

33	Stan Russell	USF	Zero Energy Home Learning Center	UCF-Florida Solar Energy Center
34	Yogi Goswami	USF	Design, Construction and Operation of CSP Solar Thermal Power Plants in Florida	University of Florida
35	Yogi Goswami	USF	Design, Construction and Operation of CSP Solar Thermal Power Plants in Florida	University of Central Florida

8. Existing or Potential Collaborations with Private Industry - FESC Funded Faculty

During Oct. 1, 2011 to Sep 30, 2012 Period (Back to top)

SUS related faculty reported 120 collaborations with industry in this reporting period.

#	Faculty	University	Description of Collaboration	Name of Industry
1	Dr. Howard Hanson	FAU	DOE Contract Awards	Ecology & Environment
2	Dr. Howard Hanson & Dr. James VanZweiten	FAU	DOE Contract Awards	Dehlsen Associates
3	Dr. Pierre Beaujean	FAU	Global Standards	ISO/TC 108/SC 5
4	Susan Skemp	FAU	Ocean Energy Issues & Policy	ASCE
5	Susan Skemp	FAU	Ocean Energy Issues & Policy	ASME
6	Susan Skemp	FAU	MOU - Energy Distribution & Integration	FPL
7	Susan Skemp	FAU	DOE Contract Awards	Lockheed Martin
8	Susan Skemp	FAU	MOU - Research & Testing	NaREC, UK
9	Susan Skemp	FAU	MOU & Industry Affiliates Program	OBOE
10	Susan Skemp	FAU	Ocean Energy Issues & Policy	Ocean Renewable Energy Coalition (OREC)
11	Susan Skemp	FAU	Ocean Energy Research, Testing & Policy	Over 3-dozen CDAs with global companies
12	Susan Skemp	FAU	Ocean Energy Issues & Policy	Palm Beach County Business Development Board
13	Susan Skemp	FAU	MOU & Industry Affiliates Program	Vision Energy
14	Susan Skemp, Dr. Arockiasamy, Gabe Alsenas	FAU	Global Standards	IEC US TC 114 TAG
15	Shawn R. Smith	FSU	Expanding the offshore wind industry within Florida	Greenberg Traurig PA
16	Shawn R. Smith	FSU	Background research	Mark Powell, National Oceanographic and Atmospheric Administration
17	Shawn R. Smith	FSU	Feasibility Study	Siemens Wind Power in Orlando, Florida
18	David Cartes	FSU	Advanced Manufacturing Grant	Bing Energy
19	David Cartes	FSU	Advanced Manufacturing Grant	City of Tallahassee
20	David Cartes	FSU	Industrial Advisor/Incubator	Marpan Recycling
21	David Cartes	FSU	Industrial Advisor/Incubator	Mentor Business Resources
22	David Cartes	FSU	Commercialization	Nanophotonica
23	David Cartes	FSU	Advanced Manufacturing Grant	Rocket Hub
24	David Cartes	FSU	Industrial Advisor/Incubator	Supply Management International LLC
25	Krothapalli, A	FSU	Hydro-processing the bio-oils	Energia Technologies Inc. in Oakland California

26	Ordonez, Juan "J.C."	FSU		Philippine National Academy
27	Paul Ruscher	FSU	Data Collection point (station)	Caribbean Solar Energy Center (Tobago)
28	Paul Ruscher	FSU	Data Collection point (station)	NOAA Global Systems Division, Earth Science Resource Laboratory (Boulder, CO)
29	Paul Ruscher	FSU	Data Collection point (station)	NOAA/National Weather Service Key West (FL)
30	Steinar Dale	FSU	System Restoration Simulation and Analysis	City of Tallahassee Electric Utility
31	Steinar Dale	FSU	Florida Grid Modeling and Simulation, Utility-University Engagement, including Collaborative Proposals	Florida Reliability Coordinating Council (FRCC)
32	Steinar Dale	FSU	Florida Grid Modeling and Simulation, Utility-University Engagement, including Collaborative Proposals	FRCC member utilities (most FL utilities, through FRCC committees)
33	David Van Winkle	FSU	Collaborative research	Sunnyland LLC
34	Marilyn Barger and Nina Stokes	HCC-FLATE	As part of the Energy Systems Technician 2 Project Team, working on creation and implementation of a new, Energy Efficiency specialization for the existing Engineering Technology Degree.	Energy Reduction Solution, Keith Zipper, President
35	David Blair	UCF	Technology licensing	Thor Energy
36	Jim Fenton	UCF/FSEC	Collaborative research and proposal	SEMATECH
37	C. Balaban	UF	Introduction of faculty for potential proposal collaboration	Algenol
38	C. Balaban	UF	Introduction of FESC	Applied Research Associates (ARA)
39	C. Balaban	UF	Introduction of FESC	Appollo Energy Systems
40	C. Balaban	UF	Introduction of FESC	Aquion
41	C. Balaban	UF	Introduction of FESC	Biofuels Digest
42	C. Balaban	UF	Introduction of FESC	BioTork
43	C. Balaban	UF	PV Solar	BlueChip Energy
44	C. Balaban	UF	Introduction of FESC	Bren-Tronics
45	C. Balaban	UF	Collaboration- economic development efforts	Canadian Consulate
46	C. Balaban	UF	Proposal support	ENSIDA
47	C. Balaban	UF	Introduction of FESC	Excellatron
48	C. Balaban	UF	Introduction of FESC	Extreme Power
49	C. Balaban	UF	Introduction of FESC	FL City Gas
50	C. Balaban	UF	Introduction of FESC	Florida Sustainables LLC
51	C. Balaban	UF	Introduction of FESC	Gaiergy

52	C. Balaban	UF	Introduction of FESC	German American Chamber of Commerce
53	C. Balaban	UF	Introduction of FESC /potential proposal collaboration	Greenberg Traurig
54	C. Balaban	UF	Introduction of FESC to new contacts	GRU
55	C. Balaban	UF	Introduction of FESC and FESC faculty	Huber & Associates
56	C. Balaban	UF	Potential collaborative project	Hydrovolt
57	C. Balaban	UF	Introduction of FESC	INEOS
58	C. Balaban	UF	Introduction of FESC	Mesdi Systems Inc.
59	C. Balaban	UF	Introduction of FESC	NEI
60	C. Balaban	UF	Introduction of FESC	Particle Solutions LLC
61	C. Balaban	UF	Introduction of FESC	Power Tree
62	C. Balaban	UF	Introduction of FESC	Renewable Energy Strategies
63	C. Balaban	UF	Introduction of FESC	Renewable Energy Strategies
64	C. Balaban	UF	Introduction of FESC	Rush Eneterprises
65	C. Balaban	UF	Introduction of FESC	SebaiCMET, Inc
66	C. Balaban	UF	Introduction of FESC	SERF
67	C. Balaban	UF	Introduction of faculty for potential proposal collaboration	Sion Power
68	C. Balaban	UF	Introduction of FESC	SunEdison
69	C. Balaban	UF	Introduction of FESC	Trane
70	C. Balaban	UF	Introduction of FESC	Xtreme Power
98	C. Balaban	UF	Introduction of FESC and faculty	Re-Gen
71	Franky So	UF	OLED lighting	PPG
72	Franky So	UF	Organic PV	Sestar
73	Franky So	UF	OLED lighting	Sinmat
74	Franky So	UF	OLED displays	Wintek Electro Optics
75	Gary Peter	UF	Forest Productivity	F&W Consulting
76	Gary Peter	UF	Biofuels	ArborGen
77	Gary Peter	UF	Forest Tree Genetics & Improvement	ArborGen and Rayonier
78	Gary Peter	UF	Forest Tree Genetics & Improvement	Foley Timber & Land Co
79	Gary Peter	UF	Forest Tree Genetics & Improvement	Packaging Corporation o America and PlumCreek Timber
80	Gary Peter	UF	Forest Productivity	PlumCreek Timber and Rayonier

81	Gary Peter	UF	Forest Productivity	Resource Management Services and Weyerhaeuser
82	Gary Peter	UF	Forest Tree Genetics & Improvement	State of Florida – Florida Forest Service,
83	Gary Peter	UF	Forest Tree Genetics & Improvement	State of Georgia – Georgia Forestry Commission
84	Gary Peter	UF	Forest Tree Genetics & Improvement	Weyerhaeuser
85	Jacob Chung	UF	Biomass gasification	PlanetGreen Solutions
86	Jenshan Lin	UF	Collaborations on Wireless Power Research	ITRI, Taiwan
87	Jenshan Lin	UF	Collaborations on Wireless Power Research	NEC, Japan
88	Jenshan Lin	UF	Collaborations on Wireless Power Research	RIST, Korea
89	Kevin Jones	UF	Collaborative research	Planar Energy
90	Kirk Ziegler	UF	Collaborative research - energy storage	G4 Synergetics
91	Pratap Pullammanappallil	UF	Biofuels	Buckeye
92	Russ Bowers	UF	Collaborative project	OptiGrate
93	Sean Meyn	UF	Collaborative White Paper	SAFT
94	Spyros Svoronos	UF	Collaborative Project	JDC Inc
95	Tim Anderson	UF	PV chemicals	Arkema
96	Tim Anderson	UF	PV Solar	Clairvoyant Energy
97	Tim Anderson	UF	Collaborative research, energy storage, PV	Mainstream Engineering
99	Babu Joseph	USF	Fischer Tropsch Liquefaction process	Prado Associates
100	Babu Joseph	USF	Converting Landfill Gas to Liquid Fuels	Trash2Cash LLC
101	Don Morel	USF	Solar PV Manufacturing	Mustang Solar, a Division of Mustang Vacuum Systems
102	Nathan Crane	USF	Low Cost Solar Power through high efficiency microscale PV cells	Sandia National Laboratory
103	Sarina Ergas	USF	Sustainable Algal Biofuel Production	Mote Marine Laboratories
104	Stan Russell	USF	Zero Energy Home Learning Center	Beck Construction
105	Stan Russell	USF	Zero Energy Home Learning Center	Bosch
106	Stan Russell	USF	Zero Energy Home Learning Center	CSI
107	Stan Russell	USF	Zero Energy Home Learning Center	DuPont
108	Stan Russell	USF	Zero Energy Home Learning Center	Hees and Associates Structural Engineers
109	Stan Russell	USF	Zero Energy Home Learning Center	Kohler
110	Stan Russell	USF	Zero Energy Home Learning Center	Lithonia
111	Stan Russell	USF	Zero Energy Home Learning Center	OUC
112	Stan Russell	USF	Zero Energy Home Learning Center	Palm Harbor Homes
113	Stan Russell	USF	Zero Energy Home Learning Center	Pella, CWS
114	Stan Russell	USF	Zero Energy Home Learning Center	Progress Energy

116	Stan Russell	USF	Zero Energy Home Learning Center	Solar World
117	Stan Russell	USF	Zero Energy Home Learning Center	Southern Cypress Manufacturers
118	Stan Russell	USF	Zero Energy Home Learning Center	TECO
119	Stan Russell	USF	Zero Energy Home Learning Center	Wells Fargo
120	George Philippidis	USF	Collaborative research - algae	Culturing solutions

9. <u>Students and Post-docs Supported By FESC Faculty</u>

During Oct. 1, 2009 to Sep 30, 2012 Period (Back to top)

Total # of Students and Post docs: 336

(Undergraduate: 35, Master: 104, PhD: 163, JD Law: 2, Post-docs: 32)

#	Faculty	University	Student /Post- docName	MS/PhD/Post - Doc
1	B. Saha	FAMU	Dwayne Joseph (Physics)	Ph.D.
2	L. Johnson	FAMU	Jorge Martinez (Physics)	Ph.D.
3	M. Edington	FAMU	Mr. Jason Caldwell (Chemistry)	BS
4	M. Edington	FAMU	Ms. Mercedes Jackson (Chemistry)	BS
5	M. Edington	FAMU	Ms. Teresa Eaton (Chemistry)	BS
6	B. Saha	FAMU	Edwin Quashie (Physics)	Ph.D.
7	C. A. Weatherford	FAMU	Dr. Gennady Gutsev (Physics)	Post-Doc
8	C. A. Weatherford	FAMU	Roy Tucker (Physics)	Ph.D.
9	C.A. Weatherford	FAMU	Dr. Genzo Tanaka (Physics)	Post-Doc
10	C.A. Weatherford	FAMU	Dr. Xingjun Zhang (Physics)	Post-Doc
11	Charles A. Weatherford	FAMU	Alexander Schroeder (Physics)	BS
12	Charles A. Weatherford	FAMU	Baysha Bernales	BS
13	Charles A. Weatherford	FAMU	Dominique Berry	BS
14	Charles A. Weatherford	FAMU	Jerry Clark	BS
15	Charles A. Weatherford	FAMU	Albert Wynn III (Physics)	Ph.D.
16	Charles A. Weatherford	FAMU	Boyan Hristov	Ph.D.
17	Charles A. Weatherford	FAMU	Daniel Gebremedhin (Physics)	Ph.D.
18	Charles A. Weatherford	FAMU	Eddie Quashie	Ph.D.
19	D. Mezonlin	FAMU	James Titus (Physics)	Ph.D.
20	E. Johnson	FAMU	John Branch (Environmental Science)	Ph.D.
21	E. Treadwell	FAMU	Patrice Jackson (Physics)	Ph.D.
22	J. Johnson	FAMU	Mareena Robinson (Physics)	BS
23	J. Johnson	FAMU	Alonzo Brandon Alexander (Physics Education)	MS

24	Joseph Johnson	FAMU	Dr. Delonia Wiggins (Physics)—received Ph.D. Spring 2010	Post-Doc
25	K. Belay	FAMU	Mr. Kevin Jones (Physics)	BS
26	K. Belay	FAMU	Mr. Kimani Gopaul (Physics)	BS
27	K. Belay	FAMU	Yoseph Abere (Physics)	Ph.D.
28	K. Williams	FAMU	Ms. Marquita Scott (Physics)	BS
29	L. Johnson	FAMU	Staci Brown (Physics)	Ph.D.
30	L. Johnson	FAMU	Dr. Charlemagne Akpovo (Physics)	Post-Doc
31	M. Edington	FAMU	Mr. Brantly Scott (Chemistry)	BS
32	M. Edington	FAMU	Ms. Antoinette Addison (Chemistry)	BS
33	M. Edington	FAMU	Ms. Chatney Spencer (Chemistry)	BS
34	M. Encinosa	FAMU	Ms. Kalisa Villafana (Physics)	BS
35	M. Encinosa	FAMU	Johnny Williamson (Physics)	Ph.D.
36	Maurice Edington	FAMU	Dr. Dawn Lewis (Chemistry)	Post-Doc
37	Bassem Alhalabi	FAU	Abishek Duraiswamy	MS
38	Bassem Alhalabi	FAU	Joseph Anthony Gundel	MS
39	Bassem Alhalabi	FAU	Mark Bowren	MS
40	Bassem Alhalabi	FAU	Raviteja Gadipudi	MS
41	Chaoki Ghenai	FAU	Benjamin Garry Oliver	MS
42	Chi-Tay Tsai	FAU	Jorge Joaquin Perez, Jr	MS
43	Chi-Tay Tsai	FAU	Quingde Chen	PhD
44	George Frisk	FAU	Ryan Rundle	MS
45	Hari Kalva	FAU	Asif Rahman	MS
46	Hari Kalva	FAU	Rafael Giusti	MS
47	Hari Kalva	FAU	Reena Ursula Friedel	MS
48	Hari Kalva	FAU	Sagar Aghera	MS
49	Hari Kalva	FAU	Waazim Reza	MS
50	Hassan Mahfuz	FAU	Mohammad Wasim Akram	MS
51	Hassan Mahfuz	FAU	Fang Zhou	PhD
52	Ionut Cardei	FAU	Yang Qin	MS
53	Ionut Cardei	FAU	Anthony Marcus	MS
54	Ionut Cardei	FAU	Timur Tavlilov	MS
55	Isaac Elishakoff	FAU	Yohann Miglis	MS
56	Janet Wyneken	FAU	Bovery, Caitlin	MS
57	Janet Wyneken	FAU	Micah Rogers	MS
58	Janet Wyneken	FAU	Justin Perrault	PhD
59	Jeanette Wyneken	FAU	Erin McMichael	PhD
60	Jim VanZwieten	FAU	Aaron Donnelly Fisher	MS
61	Jim VanZwieten	FAU	Allison Cribbs	MS
62	Jim VanZwieten	FAU	Andrew Krupski	MS
63	Jim VanZwieten	FAU	Basil Lee Hacker, Jr	MS
64	Jim VanZwieten	FAU	Benjamin Shaul	MS

65	Jim VanZwieten	FAU	James Lovenbury	MS
66	Jim VanZwieten	FAU	Lynn Rauchenstein	MS
67	Jim VanZwieten	FAU	Matthew Young	MS
68	Jim VanZwieten	FAU	Michael Seibert	MS
69	Jim VanZwieten	FAU	Serena Parton	MS
70	Judith Benson, Coordinator	FAU	Elizabeth Wojtisek	MS
70	Karl VonEllenrieder	FAU	William Valentine	MS
71	Madasamy Arockiasamy	FAU	Amit Janesh Singh	MS
72	Madasamy Arockiasamy	FAU	Carla Silva Almeida	MS
74	Madasamy Arockiasamy	FAU	Junior Senat	MS
75	Madasamy Arockiasamy	FAU	Shaun Hurley	MS
76	Manhar Dhanak	FAU	Dimitrios Psarrou	MS
70	Manhar Dhanak	FAU	Alana Smentek-Duerr	PhD
78	Pierre Philippe Beaujean	FAU	Nicholas Waters	MS
79	Shihong Huang	FAU	Rowan Hughes	BS
80	Shihong Huang	FAU	Stuart Ramgolam-Singh	BS
81	Stewart Glegg	FAU	Julian Guerra	MS
82	Stewart Glegg	FAU	Renee Christina Lippert	MS
83	Taghi Khoshgoftaar	FAU	Janell Duhaney	PhD
84	Taghi Khoshgoftaar	FAU	Randall Wald	PhD
85	Zhuang/Erdol	FAU	Ryan Thew	MS
86	Zhuang/Erdol	FAU	Ricardo Castellanos Jimenez	MS
87	Zhuang/Erdol	FAU	Mahdi Esfahanian	PhD
88	Zhuang/Erdol	FAU	Savaskan Bulek	PhD
89	Anjane'yulu' Krothapalli	FSU	John Dascomb	MS
90	Anjane'yulu' Krothapalli	FSU	Jonathan Pandolfini	MS
91	Anjane'yulu' Krothapalli	FSU	Justin Kramer	MS
92	Anjane'yulu' Krothapalli	FSU	Michael Gnos	MS
93	Anjane'yulu' Krothapalli	FSU	Shannon Ingersoll	MS
94	Anjane'yulu' Krothapalli	FSU	Malikarun Bhadrashetti	Ph.D.
95	Anjane'yulu' Krothapalli	FSU	Ifegwu Eziyi	PhD
96	Anjane'yulu' Krothapalli	FSU	Jon Pandolfini	PhD
97	Anjane'yulu' Krothapalli	FSU	John Dascomb	PhD
98	Chan Hilton	FSU	Gustavo Munoz	BS Civil Eng.
99	Chan Hilton	FSU	Andres Lastra	MS Civil Eng./Sc. Comp.
100	Chan Hilton	FSU	Chandra McGee	PhD Civil Eng.
101	Chan Hilton	FSU	Sandip Patil	PhD Civil Eng.
102	David Cartes	FSU	Gina Teofilak	BS
103	David Cartes	FSU	Akintunde Badaru	MS
104	David Cartes	FSU	Passinam Tatcho	MS
105	David Cartes	FSU	Siyu Leng	Ph.D.
106	David Cartes	FSU	Il Yop (David) Chung	Post-Doc
107	J.B. Ruhl	FSU	Andrew Fier	JD, Law
108	Joel Kostka	FSU	Kristina Welch	MS, Oceanography
109	Joel Kostka	FSU	Claire Smith	PhD, Oceanography

110	Joel Kostka	FSU	Om Prakash	Post-Doc	
111	Joseph Cronin	FSU	Ed Ramirez	PhD	
112	Joseph Cronin	FSU	Jacqui Bybee	PhD	
112	Joseph Cronin	FSU	Jeremy Wolter	PhD	
113	Joseph Cronin	FSU	Mark Gleim	PhD	
114	Joseph Cronin	FSU	Stephanie Lawson	PhD	
115	Juan "J.C." Ordonez	FSU	Quinn Straub	MS, Mech. Eng.	
117	Juan "J.C." Ordonez	FSU	Tom Tracy	MS, Mech. Eng.	
117	Paul Ruscher	FSU	Timothy Sliwinski	BS, Meteorology	
110	Paul Ward	FSU	Michael Marshall	BS	
119		150			
120	Paul Ward	FSU	Katerina Kudlockova	PhD, Ed. Psychology	
121	Paul Ward	FSU	Stephanie Robertson	PhD, Ed. Psychology	
122	Paul Ward	FSU	Guler Arsal	PhD, Educational Psychology	
123	Paul Ward	FSU	Avner Dachoach	PhD, Psychology	
124	Paul Ward	FSU	Jackie Kott	PhD, Psychology	
125	Paul Ward	FSU	Jarrett Evans	PhD, Psychology	
126	Paul Ward	FSU	Jason Torof	Post-Doc, Psychology	
127	Philip Steinberg	FSU	Adam Keul	Ph.D.	
128	R. Mark Issac	FSU	Sean Collins	PhD, Economics	
129	Richard Feiock	FSU	Kristen Holder	BS	
130	Richard Feiock	FSU	Steve Traylor	BS	
131	Richard Feiock	FSU	Charles Andrews	MPA	
132	Richard Feiock	FSU	Mary Jo Spector	MS	
133	Richard Feiock	FSU	Hyunsang Ha	Ph.D.	
134	Richard Feiock	FSU	Rizalino Cruz	Ph.D.	
135	Richard Feiock	FSU	Sang Chul Park	Ph.D.	
136	Richard Feiock	FSU	Anthony Kassekert	PhD	
137	Richard Feiock	FSU	На	PhD	
138	Richard Feiock	FSU	Hongtao Yi	PhD	
139	Richard Feiock	FSU	Jongsun Park	PhD	
140	Richard Feiock	FSU	Lee	PhD	
141	Richard Feiock	FSU	In Won Lee	Post Doc	
142	Shawn R. Smith	FSU	Cristina Collier	BS, Meteorology	
143	Steinar Dale	FSU	Thamer Alquthami	MS, Mech. Eng.	
144	Steinar Dale	FSU	Harsha Ravindra	MS, Mechanical Eng.	
145	Svetlana Pevnitskaya	FSU	Matthew Cutillo	PhD, Economics	
145	Tingting Zhao	FSU	John Sulik	Ph.D.	
140	Tingting Zhao	FSU	Tim Kelleher	PhD	
147	U. Meyer-Baese	FSU	Bhattacharya	PhD	
148	U. Meyer-Baese	FSU	J. Xu	PhD	
149	U. Meyer-Baese Uma Outka		J. Xu Sarah Berner		
	J. Shen	FSU UCF	Chris Hamilton	JD, Law MS	
151					
152	J. Shen	UCF	Ala Alsaeed	Ph.D.	

152	L 01	UCE	11 11	DI D
153	J. Shen	UCF	H. Hu	Ph.D.
154	J. Shen	UCF	Karthik Padmanabhan	Ph.D.
155	J. Shen	UCF	Kejiu Zhang	Ph.D.
156	J. Shen	UCF	Lin Chen	Ph.D.
157	J. Shen	UCF	Ross Kerley	Ph.D.
158	J. Shen	UCF	Souhaib Harb	Ph.D.
159	J. Shen	UCF	Xiang Fang	Ph.D.
160	Zhihui Qu	UCF	Carlos Velez	MS
161	Ali T. Raissi	UCF/FSEC	Amit Gujar	Post-Doc
162	Darlene Slattery	UCF/FSEC	Benjamin Pearman	Ph.D.
163	Neelkanth Dhere	UCF/FSEC	Eric Schneller	MS
164	Neelkanth Dhere	UCF/FSEC	Ashwani Kaul	Ph.D.
165	Neelkanth Dhere	UCF/FSEC	Narendra Shiradkar	Ph.D.
166	Neelkanth Dhere	UCF/FSEC	Sagarnil Das	Ph.D.
167	Neelkanth Dhere	UCF/FSEC	Shirish Pethe	Ph.D.
168	Nicoleta Sorloaica-Hickman	UCF/FSEC	Rodica Krueger	M.S.
169	Nicoleta Sorloaica-Hickman	UCF/FSEC	Kris David	Ph.D.
170	Nicoleta Sorloaica-Hickman	UCF/FSEC	Amare Benor-Belay	Post-Doc
171	Nicoleta Sorloaica-Hickman	UCF/FSEC	K Shivitranuruk	Post-Doc
172	Nicoleta Sorloaica-Hickman	UCF/FSEC	Wei Zhou	Post-Doc
173	Robert M. Reedy	UCF/FSEC	Hubert Seigneur	Post-Doc
174	Franky So	UF	Fred Steffy	PhD
175	Franky So	UF	Jeg Subbiah	post-doc
176	Gabriel Ghita	UF	A. Holcomb	BS
177	Gabriel Ghita	UF	D. Lago (BS)	BS
178	Gabriel Ghita	UF	G. Fekete	BS
179	Gabriel Ghita	UF	S. Brown	BS
180	Gabriel Ghita	UF	J. Lewis	MS
181	Gabriel Ghita	UF	J. Musgrave	MS
182	Gabriel Ghita	UF	M. Marzano	MS
183	Gabriel Ghita	UF	G. Bickford	MS
184	Gary Peter	UF	Alejandro Riveros Walker	Ph.D.
185	Gary Peter	UF	Jianxing Zhang	Ph.D.
186	Gary Peter	UF	Patricio Munoz	Ph.D.
187	Gijs Bosman	UF	Yige Hu	PhD
188	Hahn, Klausner	UF	Kyle Allen	Ph.D.
189	Hahn, Klausner	UF	Like Li	Ph.D.
190	Hahn, Klausner	UF	Michael Bobek	Ph.D.
191	Hahn, Klausner	UF	Richard Stehle	Ph.D.
192	Helena Weaver	UF	Justin Dodson	MS
193	Jacob N. Chung	UF	Sada Sekar Gopan	M.S.
194	Jacob N. Chung	UF	Elango Balu	Ph.D.
195	James Heaney	UF	James Green	MS
196	James Heaney	UF	Ken Friedman	PhD
197	James Heaney	UF	Miguel Morales	PhD
198	James Heaney	UF	John McCary	PhD
199	James Heaney	UF	Joong Lee	Post Doc
1		UF	Fadi Alnaimat	Ph.D.

201	Jenshan Lin	UF	Gabriel Reyes	MS
201	Jenshan Lin	UF	Jaime Garnica	PhD
202	Jenshan Lin	UF	Te-Yu Kao	PhD
203	Jenshan Lin	UF	Xiaogang Yu	PhD
204	Jiangeng Xue	UF	Zhifeng Li	M.S.
205	Jiangeng Xue	UF	Ying Zheng	Ph.D.
200	Jiangeng Xue	UF	Yixing Yang	Ph.D.
207	Joao Vendramini	UF	Andre Aguiar	PhD
208	John Erickson	UF	Arkorn Soikew	MS
209	John Erickson	UF	Jeffrey Fedenko	MS
			Kenneth Woodard	Postdoc
211 212	John Erickson Pierce Jones	UF UF-PREC		MS
			Sarah Dwyer	
213	Pierce Jones	UF-PREC	Flavio Hazan	Ph.D.
214	Pierce Jones	UF-PREC	Hal Knowles	Ph.D.
215	Pierce Jones	UF-PREC	Nicholas Taylor	Ph.D.
216	Jon Steward	UF	Bradford Sullivan	Post Doc
217	Jon Steward	UF	Filip Boratynski	Post Doc
218	K. T. Shanmugam	UF	Brelan Moritz	Ph. D.
219	K. T. Shanmugam	UF	Yue Su	Ph. D.
220	K. T. Shanmugam	UF	Deepika Awasthi	Ph.D.
221	K. T. Shanmugam	UF	Mun Su Rhee	Post-doc
222	K. T. Shanmugam	UF	Qingzhao Wang	Post-doc
223	Kelly Jordan	UF	Raymond Fortin	MS
224	Kelly Jordan	UF	Geoffrey Bickford	Ph.D.
225	Kelly Jordan	UF	Heejun Chung	Ph.D.
226	Kelly Jordan	UF	Jason Lewis	Ph.D.
227	Kelly Jordan	UF	Ozwaldo Pelaez	Ph.D.
228	Kelly Jordan	UF	Sasmit Gokahle	Ph.D.
229	Kelly Jordan	UF	Dominik Rätz	Postdoc
230	Kevin Jones	UF	Nikolas Vito	Ph.D.
231	Lynn Sollenberger	UF	Daniel Pereira	M.S.
232	Lynn Sollenberger	UF	Nick Krueger	M.S.
233	Lynn Sollenberger	UF	Chae-In Na	Ph.D.
234	Lynn Sollenberger	UF	Kesi Liu	Ph.D.
235	Lynn Sollenberger	UF	Kim Cline	Ph.D.
236	Lynn Sollenberger	UF	Miguel Castillo	PhD
237	Lynn Sollenberger	UF	Kesi Liu	Postdoc
238	Mark Jamison	UF	Colin Knapp	Post-doc
239	Matias Kirst	UF	Juan Acosta	Ph.D.
240	Matias Kirst	UF	Marcio Resende	Ph.D.
241	P Pulammanappallil	UF	Abhay Koppar	PhD
242	Panos Pardalos	UF	Neng Fan	PhD
243	Pratap Pullammanappallil	UF	Abhishek Dhoble	MS
244	Pratap Pullammanappallil	UF	Cesar Moreira	MS
245	Pratap Pullammanappallil	UF	Douglas Renk	MS
· · · · · · · · · · · · · · · · · · ·			Mandu Income	MS
246	Pratap Pullammanappallil	UF	Mandu Inyang	
246 247	Pratap Pullammanappallil Pratap Pullammanappallil	UF UF	Samriddhi Buxy	MS

250 1 251 1 252 1 253 1	Pratap Pullammanappallil Pratap Pullammanappallil Pratap Pullammanappallil	UF UF	Diane Chaulic Patrick Dube	PhD
251 1 252 1 253 1		UF	Patrick Dube	
252 1 253 1	Pratap Pullammanappallil			PhD
253	1 11	UF	Robert Diltz	PhD
	Pratap Pullammanappallil	UF	Sachin Gadekar	PhD
	Pratap Pullammanappallil	UF	Zhuoli Tian	PhD
	Preston, J.F.	UF	Lei Pan	M.S.
	Preston, J.F.	UF	Neha Sawhney	Ph.D.
	Preston, J.F.	UF	Guang Nong	Post-Doc
	Preston, J.F.	UF	Virginia Chow	Post-Doc
	Robert Gilbert	UF	Pedro Korndorfer	MS
	Robert Gilbert	UF	Jim Shine	PhD
	Sabine Grunwald	UF	CW Ross	MS
261	Sabine Grunwald	UF	X. Xiong	PhD
262	Sabine Grunwald	UF	Gustavo Vasques	Post-Doc
263	Shirley Meng	UF	Alex Emly	BS
	Shirley Meng	UF	Thomas McGilvray	BS
265	Shirley Meng	UF	Chris Fell	Ph.D.
266	Shriley Meng	UF	Ming-Che Yang	Ph.D.
267 7	Tim Anderson	UF	Albert B. Hicks	Ph.D.
268 7	Tim Anderson	UF	Christopher Muzzillo	Ph.D.
269 7	Tim Anderson	UF	David Wood	Ph.D.
270 '	Tim Anderson	UF	Joseph C. Revelli	Ph.D.
271 7	Tim Anderson	UF	Michael Hague	Ph.D.
272 7	Tim Anderson	UF	Rangarajan Krishnan	Ph.D.
273 ′	Tim Anderson	UF	Seo Young Kim	Ph.D.
274 7	Tim Anderson	UF	Vaibhav Chaudhari	Ph.D.
275	William E. Lear Jr.	UF	Minki Kim	M.S.
276	William E. Lear Jr.	UF	Kurt Schulze	Ph.D.
277	Helena Weaver	UF	Justin Dodson	Ph.D.
278	Joel Kostka	UGA	Juergen Wiegel	Post-Doc
279	Andrew Hoff	USF	Prefers not to mention name	M.S.
280	Andrew Hoff	USF	Prefers not to mention name	Post Doc
281	Babu Joseph	USF	Alejandro Barbosa	BS
282	Babu Joseph	USF	Matt Wetherington	BS
283	Babu Joseph	USF	Justin Stottlemeyer	BS
284	Babu Joseph	USF	Maria Pinilla	MS
285	Babu Joseph	USF	Ali Gardezi	MS
286	Babu Joseph	USF	Bijith Mankidy	Ph.D.
287	Babu Joseph	USF	Chi Ta (partially) Yang	Ph.D.
	Babu Joseph	USF	Nianthrini Balakrishnan	Ph.D.
289	Babu Joseph	USF	Ali Gardezi	PhD
	Don Morel	USF	Manikanan Sampathkumar	M.S.
291	Don Morel	USF	Keshavanand Jayadevan	MS
	Don Morel	USF	Sree Satya Kanth Benapudi	MS
	Don Morel	USF	Ryan Anders	PhD
	Don Morel	USF	Y. Wang	PhD
	Elias Stefanakos	USF	Anthony D'Angelo	M.S.
	Elias Stefanakos	USF	Emre Demirocak	Ph.D.

297	Elias Stefanakos	USF	Michael Celestin	Ph.D.
298	Elias Stefanakos	USF	Rudraskandan Ratnadurai	Ph.D.
299	Elias Stefanakos	USF	Saumya Sharma	Ph.D.
300	Elias Stefanakos	USF	Zhang, Yangyang	Ph.D.
301	Jeffrey Cunningham	USF	Arlin Briley	MEVE
302	Jeffrey Cunningham	USF	Mark Thomas	MSEV
303	Jeffrey Cunningham	USF	Saeb Besarati	PhD
304	Jeffrey Cunningham	USF	Tina Roberts-Ashby	PhD
305	Jeffrey Cunningham	USF	Shadab Anwar	Post-doc
306	Robert Weisberg	USF	Yong Huang	Post Doc
307	Sarath Witanachchi	USF	Marak Merlak	Ph.D.
308	Sarina Ergas	USF	Benjamin Gillie	BS
309	Sarina Ergas	USF	Ruben Jean	BS
310	Sarina Ergas	USF	John Trimmer	M.S.
311	Sarina Ergas	USF	Maria Pinilla	M.S.
312	Sarina Ergas	USF	Sarah Watson	M.S.
313	Sarina Ergas	USF	Matthew Gaston	MS
314	Sarina Ergas	USF	Mehregan Jalalizadeh	MS
315	Sarina Ergas	USF	Angela Chapman	MS
316	Sarina Ergas	USF	Eunyoung Lee	Ph.D.
317	Sarina Ergas	USF	Innocent Udom	Ph.D.
318	Sarina Ergas	USF	Trina Halfhide	Ph.D.
319	Sarina Ergas	USF	Angela Chapman	PhD
320	Stanley Russell	USF	Jean Frederic Monod	MA
321	Stanley Russell	USF	Jon Brannon	МА
322	Stanley Russell	USF	Mario Rodriguez	МА
323	Stanley Russell	USF	Sean Smith	MA
324	Tapas Das	USF	Ehsan Salimi	Ph.D.
325	Tapas Das	USF	Patricio Rocha	Ph.D.
326	Yogi Goswami	USF	Sam Wiejewardane	Ph.D
327	Yogi Goswami	USF	Antonio Ramos Archibold	Ph.D.
328	Yogi Goswami	USF	Chen, Huijuan	Ph.D.
329	Yogi Goswami	USF	Demirkaya, Gokmen	Ph.D.
330	Yogi Goswami	USF	Li, Chennan	Ph.D.
331	Yogi Goswami	USF	O. Kofi Dalrymple	Ph.D.
332	Yogi Goswami	USF	Philip Myers	Ph.D.
333	Yogi Goswami	USF	Prashantha Sridheran	Ph.D.
334	Yogi Goswami	USF	Rachana Vidhi	Ph.D.
335	Yogi Goswami	USF	Trahan, Jamie	Ph.D.
336	Yogi Goswami	USF	Vasquez Padilla, Ricardo	Ph.D.

10. <u>Students Graduated – FESC Faculty</u>

During Oct. 1, 2011 to Sep 30, 2012 Period (Back to top)

Total # of Students Graduated: 39 (Undergraduate: 5, Master: 17, PhD: 17)

#	Faculty	University	Student Name	MS/PhD/Post -Doc
1	Charles A. Weatherford	FAMU	Alexander Schroeder	BS
2	Charles A. Weatherford	FAMU	Hanna Mochena	BS
3	Charles A. Weatherford	FAMU	Olakunle Olojo	BS
4	Charles A. Weatherford	FAMU	Jeffrey Battaglia	MS
5	Charles A. Weatherford	FAMU	Dwayne Joseph	Ph.D.
6	Charles A. Weatherford	FAMU	James Titus	Ph.D.
7	Alhalabi, Bassem	FAU	Mark Bowren	MS
8	Dhanak, Manhar	FAU	Alana Smentek-Duerr	PhD
9	Glegg, Stewart	FAU	Renee Christina Lippert	MS
10	Kalva, Hari	FAU	Reena Ursula Friedel	MS
11	VonEllenrieder, Karl	FAU	William Valentine	MS
12	David Cartes	FSU	Gina Teofilak	BS
13	David Cartes	FSU	Akintunde Badaru	MS
14	David Cartes	FSU	Passinam Tatcho	MS
15	Darlene Slattery	UCF/FSEC	Benjamin Pearman	Ph.D.
16	Marianne Rodgers	UCF/FSEC	Chris Odeltola	M.S.
17	Neelkanth Dhere	UCF/FSEC	Ashwani Kaul	Ph.D.
18	Neelkanth Dhere	UCF/FSEC	Eric Schneller	Ph.D.
19	Neelkanth Dhere	UCF/FSEC	Gopal Singh	Ph.D.
20	Neelkanth Dhere	UCF/FSEC	Narendra Shiradkar	Ph.D.
21	David Hahn	UF	Julia Setlak	MS
22	Jacob Chung	UF	Tae-Seok Lee	Ph.D.
23	Jenshan Lin	UF	Gabriel Reyes	MS
24	Jenshan Lin	UF	Xiaogang Yu	PhD
25	Jenshan Lin	UF	Yan Yan	PhD
26	Kelly Jordan	UF	Jason Lewis	MS
27	Kelly Jordan	UF	Geoffrey Bickford	MS
28	Sabine Grunwald	UF	C.W. Ross	MS
29	Andrew Hoff	USF	Prefers not to mention name	M.S.
30	Babu Joseph	USF	Matthew Wetherington	BS
31	Don Morel	USF	K. Jayadevan	MS
32	Don Morel	USF	S. Bendapudi	MS
33	Elias Stefanakos	USF	Anthony D'Angelo	MS
34	Yogi Goswami	USF	Chennan Li	Ph.D.
35	Yogi Goswami	USF	Gokmen Demirkaya	Ph.D.
36	Yogi Goswami	USF	Huijuan Chen	Ph.D.
37	Yogi Goswami	USF	O. Kofi Dalrymple	Ph.D.
38	Yogi Goswami	USF	Ricardo Vasquez Padilla	Ph.D.
39	Babu Joseph	USF	Ali Gardezi	Ph.d.

11. Business Start-Ups in Florida for All SUS Faculty

During Oct. 1, 2008 to Sep 30, 2012 Period (Back to top)

#	University	Name of Business	Location	Start-Up Date	Specialty
1	FSU	Bing Energy	Tallahassee, FL	2010	Fuel Cells
2	FSU	High Performance Magnetics	Tallahassee, FL		CIC components
3	FSU	SunnyLand Solar, LLC	Tallahassee, FL	2011	Solar Collectors
4	FSU	General Capacitor	Tallahassee, FL	2012	Supercapacitors
5	UCF	Almos Battery Corp.*	Orlando, FL	2011	Grid scale battery (Low temp Molten salt)
6	UCF	Energy Ltd, Rutherford Appleton Lab	Oxfordshire, UK	2010	Smart Hydrogen Sensing Tape
7	UCF	Mesdi Systems, Inc. *	Orlando, FL	2011	Electrospray (for Batteries, FC, etc.)
8	UCF	PV Integrated	Orlando, FL	2011	Thin Film PV
9	UF	Florida FGT, LLC	Gainesville, FL	2010	Energy Crops
10	UF	OsComp Systems Inc.	Cambridge, MA	2010	Next Generation Compressors
11	UF	RedOx Fuel Cells, Inc.	Maryland, FL	2010	Fuel Cells
12	UF	NanoPhotonica, Inc.	Longwood, FL	2010	Next Generation Optoelectronic Devices
13	UF	Emerald Endeavors, Inc.	Tampa, FL	2009	Energy Efficiency - Turbines
14	UF	Florida Sustainables	Gainesville, FL	2010	Chemicals from Biomass
15	UF	Company requested confidentiality	Gainesville, FL	2012	Chemicals to H ₂
16	UF	UB-WiSystems, Inc.	Gainesville, FL	2011	Low Power Wireless Transmission
17	UF	Solar Powder	Gainesville, FL	2011	Nanoparticle Thin Film Photovoltaics
18	UNF	Omnii Sense, LLC*	Jacksonville, FL	2011	Intelligent sensor network for street light efficiency
19	USF	MudPower*	Tampa, FL	2011	Microbial FC
20	USF	Trash 2 Cash-Energy, LLC*	Tampa, FL	2011	Landfill gas to liquid fuel

*Part of MegaWatt Venture Program.

12. <u>Specialized Energy Education Training and Outreach</u>

During Oct. 1, 2011 to Sep 30, 2012 Period (Back to top)

#	University	Description (Event Name, Faculty, etc., Location, Date)
1	FAU	Seven high school teacher training workshops based on the SNMREC curriculum. <i>Energy from Ocean Currents: the New Renewable</i> is an ocean- energy curriculum developed for 11th and 12th grade students. Engaged over 200 teachers from Dade County to St Lucie County. A seventh topic is being added based on civics/social studies to incorporate policy and regulatory aspects related to energy.
2	HCC- FLATE	Hosted Summer Energy Camp for under-represented middle school students at HCC's SouthShore campus in Ruskin, FL from July 9-12. Staff: Nina Stokes
3	HCC- FLATE	Energy-related Professional Development Workshop for middle and high school teachers in partnership with the University of South Florida (USF). The workshop was held at USF from June 26-27, 2012. Staff: Nina Stokes and Dr. D. Karaiskaj (USF).
4	HCC- FLATE	FLATE took a delegation of eight students, five faculty members and two administrators from Florida's community and state colleges on a 21 day international technician training program to Spain (June, 2012). The three week program provided students with an outstanding technical and cultural learning experience. For the second year, students enrolled in the engineering technology A.S. degree program and faculty members at Hillsborough Community College, Polk State College, State College of Florida, and Brevard Community College, participated in a structured technical education and training experience at IEFPS Usurbil GLBHI—a technical college in the Basque region of Spain.
5	HCC- FLATE	Presented a poster, " Energy Education for Florida's Future Technician Workforce ", at the 2012 Energy Summit in Orlando on August 16. Staff: Marilyn Barger
6	UCF	Installing Photovoltaic Systems, John Harrison, Tom McHaffie, and Donnie Metzger, October 3-7, 2011. 3 Brevard Workforce trained. 14 trained.
7	UCF	Installing Photovoltaic Systems, John Harrison, Tom McHaffie, and Donnie Metzger, December 5-9, 2011. 20 trained.
8	UCF	PV Technical Sales and Business Operations, Tom McHaffie, January 18-19, 2012. 10 trained.
9	UCF	Banner Center for Clean Energy Internship Training. February 16-17, 2012. 8 Brevard Workforce trained, 9 e-shelters trained.
10	UCF	Solar Water Heating and Cooling, John Harrison, Donnie Metzger, May 30-June 1, 2012. 15 trained.
11	UCF	PV Technical Sales and Business Operations, Tom McHaffie, July 10-11, 2012. 6 trained.
12	USF	Earth Day Events at the USF Botanical Gardens in 2011 by Sarina Ergas Group
13	USF	Earth Day Events at the USF Botanical Gardens in 2012 by Sarina Ergas Group

14	USF	Middleton Magnet School for Science and Technology, an economically challenged high school in East Tampa, on a project that looks at the effect of participation in authentic science research on students understanding of science. By Sarina Ergas Group
----	-----	---

APPENDIX C – FUNDING OPPORTUNITIES SENT TO FESC FACULTY

The following funding opportunities were sent to the faculty during the reporting period.

#	Title	Call #	Agency	Funding
π			Agency	Tunung
1	Advanced Propulsion Concepts and Cycles	BAA-12-03-PKP	AFRL	\$44.5M
2	Environment & Energy Quality (E2Q) Technologies II	BAA-12-10-PKM	AFRL	\$350M
3	Defense Production Act Title III. Advanced Drop-In Biofuels Production Project	SN-12-15-PKM	AFRL	\$30M
4	Defense Production Act Title III Technology Marketing Research- Addressing Availability and Cost of Fuel Cell Systems	RFI-12-16-PKM	AFRL	<i>400112</i>
5	A Pilot Institute for the National Network for Manufacturing Innovation (NNMI)	BAA-12-17-PKM	AFRL	\$60M
6	Defense Production Act Title III	BAA-12-03-PKM	AFRL/RX	\$8.5M
7	Advanced Drop-in Bio fuels Production Project	FOA-12-15-PK	AFRL	\$420M
8	Gulf of Mexico Research Initiative	BP - RFP-II	BP	\$112.5M
9	FY 2012 Environmental Studies Program	M12AS00001	Bureau of Ocean Energy Management (BOEM)	\$350K
10	Safety of Oil and Gas Operations in the US Outer Continental	E12PS00004	Department of Interior	\$5M
11	Integrated Forest Products Research Program	USDA-NIFA-SRGP- 003808	DOA	\$12.6M
12	Climate Program Office for FY 2013	NOAA-OAR-CPO- 2013-2003445	DOC	\$14.5M
13	Research and Education Program for Historically Black Colleges and Universities and Minority-Serving Institutions (HBCU/MI)	W911NF-12-R-0009:	DOD	\$25M
14	Rapid Innovation Fund Broad Agency Announcement	HQ0034-12-BAA- RIF-0001:	DOD	\$3M
15	Proposed Research on Oil Spill Response Operations BAA 2012	E12PS00012	DoI	

	The Rural Jobs and Innovation			
	Accelerator Challenge, A Coordinated			
	Initiative to Advance Regional			
16	Competiveness		EDA/USDA	\$750K each
	National Clean Diesel Funding			
17	Assistance Program, FY 2012 Request	EPA-OAR-OTAQ-		¢2014
17	for Proposals (RFP)	12-05	EPA	\$20M
	Energy and Climate Partnership of the			
10	Americas/ Caribbean Region Climate	ECPA/CRCA		\$770,500
18	Adaptation Partnership Initiative Building Construction Technology	Partnership Initiative	HED/USAID	\$770,500
	Extension Program (BCTEP) Pilot			
19	Projects	2012-BCTEP-01	NIST, DoC	\$1.33M
19		2012-DC1EF-01	NIST, DOC	\$1.55W
	U.S. Nuclear Regulatory Commission,			
	Office of Nuclear Regulatory Research			
	Announcement of Opportunity, Fiscal			
20	Years 2012	RGR-FN-0512-RES	NRC	
	U.S. Nuclear Regulatory Commission,			
	Research Conference Grant and			
	Cooperative Agreement Program,			
	Announcement of Opportunity, Fiscal			
21	Year 2012	CGR-FN-0512-RES	NRC	
	NSF/US DOE Partnership in Basic			
22	Plasma Science and Engineering	NSF 09-596	NSF	\$2M
	Sustainability Research Networks		NOT	(())
23	Competition (SRN)	NSF 11-574	NSF	\$8M
	Basic Research to Enable Agriculture			
24	Development	NSF 11-579	NSF	\$12M
25	Energy for Sustainability	NSF PD 12-7644	NSF	
26	Sustainable Energy Pathways (SEP)	NSF-11-590	NSF	\$34M
20		101-11-570	1151	ψ341 ν1
27	Academic Liaison with Industry	NGE10 510	NGE	\$516
27	(GOALI)	NSF12-513	NSF	\$5M
	Research on the Science and			
	Technology Enterprise: Statistics and			
	Surveys R&D, U.S., S&T Competitiveness, STEM Education,			
28	S&T Workforce	NSF-12-545	NSF	\$750k
20		1101-12-343	1101.	φτουκ
	NSF/DOE PARTNERSHIP ON			
	ADVANCED COMBUSTION			
29	ENGINES 2012-2015	NSF 12-559	NSF	\$12M
	International Collaboration in			
	Chemistry between US Investigators			
30	and their Counterparts Abroad	NSF-12-562	NSF	\$10M
			-	

	United States-Israel Collaboration in			
31	Computer Science (USICCS)	NSF 12-603	NSF	\$400K
	Small Business Innovation Research			
22	Program Phase I Solicitation FY-2013	NOT 10 CO5	NGE	¢2014
32	(SBIR) Energy, Power, and Adaptive	NSF-12-605	NSF	\$30M
33	Systems (EPAS)	PD-10-1518:	NSF	
34	Sensors and Sensing Systems	PD-12-1639	NSF	
57		1D-12-1037	T(SI	
35	In-Water Wave Energy Conversion (WEC) Device Testing Support	DE-FOA-0000705	US DOE	\$500
55		DE-I'OA-0000703	03 DOE	\$300
	Sustainable Cities: Urban Energy			
26	Planning for Smart Growth in China			
36	and India	DE-FOA-0000697	US DOE	
	Advanced Computational and			
	Modeling Research for the Electric			
37	Power System	DE-FOA-0000729	US DOE	\$6.6M
	Innovative Biosynthetic Pathways to			
38	Advanced Biofuels	DE-FOA-0000719	US DOE	\$12 M
	Light-Duty Fuel Cell Electric Vehicle			
39	validation Data	DE-FOA-0000625	US DOE	\$6M
	Energy Innovation Hub-Critical			
40	Materials	DE-FOA-0000687	US DOE	\$120M
	Implementation Initiatives to Advance			
41	Alternative Fuel Markets	DE-FOA-0000708	US DOE	
	Solar Energy Evolution And Diffusion			
42	Studies (SEEDS)	DE-FOA-0000740	US DOE	\$9M
	Innovative Pilot and Demonstration			
43	Scale Production of Advanced Biofuels	DE EOA 0000720	US DOE	\$20M
43		DE-FOA-0000739	US DOE	\$20M
4.4	Diagnostic Systems for Magnetic	DE EQA 0000744		¢120M
44	Fusion Energy Sciences	DE-FOA-0000744	US DOE	\$120M
45	Terrestrial Ecosystems Science SunShot Price: Race to the Rooftops	DE-FOA-0000749	US DOE	\$3.7M
46	1		US DOE	\$10M
47	DE-FOA-0000768	DE-FOA-0000768	US DOE	\$400M
48	Hydrogen Pathway Analyses	DE-FOA-0000748	US DOE	\$1M
	Predictive Modeling for Automotive Lightweighting Applications And			
	Advanced Alloy Development for			\$1.2M to
49	Automotive and Heavy-Duty Engines	DE-FOA-0000648	US DOE	\$6M each
	National Geothermal Student			
50	Competition 2012	2012-13 NGSC	US DOE	
	Expressions of Interest: Research			
	Leading to Predictive Theory and			
51	Modeling for Materials and Chemical	DEC EOL 2012	LIC DOE	\$26M
51	Sciences	BES-EOI-2012	US DOE	\$36M

52	Cost-shared Industry Partnership Program for Small Modular Reactors	DE-FOA-0000371	US DOE	\$452M
53	U.S. Offshore Wind: Advanced Technology Demonstration Projects	DE-FOA-0000410	US DOE	\$180M
54	Nuclear Energy Enabling Technologies (NEET) – Reactor Materials Nuclear Energy Enabling	DE-FOA-0000426	US DOE	\$7M
55	Technologies (NEET)- Advanced Methods for Manufacturing	DE-FOA-0000427	US DOE	\$3 M
56	U.SIndia Joint Clean Energy Research and Development Center	DE-FOA-0000506	US DOE	\$125M
57	Energy Innovation Hub - Batteries and Energy Storage	DE-FOA-0000559	US DOE	\$120M
58	Multidisciplinary University Research Initiative: High Operating Temperature Fluids	DE-FOA-0000567	US DOE	\$10M
59	Electricity Delivery and Energy Reliability, Research, Development and Analysis	DE-FOA-0000579	US DOE	\$8M
60	SunShot Concentrating Solar Power Research and Development/ Support of Advanced Fossil Resource Utilization Research by Historically Black Colleges and Universities and Other Minority Institutions Grant	DE-FOA-0000595	US DOE	\$850k
61	Second Generation Dark Matter Experiments	DE-FOA-0000597	US DOE	\$6M
62	SunShot Incubator Program- Soft Cost Reduction	DE-FOA-0000607	US DOE	
63	Stewardship Science Academic Alliances	DE-FOA-0000611	US DOE	NA
64	Nuclear Energy University Programs- General Scientific Infrastructure Support	DE-FOA-0000613	US DOE	\$300k \$21M
65	Advancements in Sustainable Algal Production (ASAP)	DE-FOA-0000615	US DOE	Area1: \$500k- \$3M Area 2: \$10- 15M
66	Accelerating the Deployment of Energy Efficiency and Renewable Energy Technologies in Indonesia	DE-FOA-0000620	US DOE	\$1.2M each
67	Energy Savings through Improved Mechanical Systems and Building Envelope Technologies	DE-FOA-0000621	US DOE	1.5M each

-				
68	Light-Duty Fuel Cell Electric Vehicle Validation Data	DE-FOA-0000625	US DOE	\$6M
	Validation of Hydrogen Refueling Station Performance and Advanced			\$400k to
69	Refueling Components Research and Development for Next	DE-FOA-0000626	US DOE	\$1M each
	Generation Nuclear Physics			
70	Accelerator Facilities	DE-FOA-0000632	US DOE	\$2M
71	Superior Energy Performance Program Administrator	DE-FOA-0000635	US DOE	\$3M
	Advanced Oxy-combustion Technology Development and Scale- up for New and Existing Coal-fired			Phase 1: \$10M Phase 2:
72	Power Plants	DE-FOA-0000636	US DOE	\$21M
73	Integrated Nuclear Medicine Research and Training Projects of Excellence	DE-FOA-0000646	US DOE	\$10M
74	Atmospheric System Research	DE-FOA-0000647	US DOE	\$3.5M
	Improving the Accuracy of Solar			\$01.6
75	Forecasting	DE-FOA-0000649	US DOE	\$9M
76	SunShot Incubator Program	DE-FOA-0000651	US DOE	\$12M
77	Technologies to Ensure Permanent Geologic Carbon Storage	DE-FOA-0000652	US DOE	\$800k to \$1.2M each
78	Plug and Play Photovoltaics	DE-FOA-0000653	US DOE	\$25M
79	Bridging Research Interactions through Collaborative Development Grants in Energy (BRIDGE)	DE-FOA-0000654	US DOE	\$9M
80	Regional Test Centers: Validation of Photovoltaic (PV) Modules and Systems	DE-FOA-0000661	US DOE	
81	Reduction of Tropical Cloud and Precipitation Biases in Global High Resolution Models	DE-FOA-0000664	US DOE	\$2M
82	Wireless Charging for Electric Vehicles	DE-FOA-0000667	US DOE	\$12M
		2210110000007		\$2M to \$30M
83	Methane Hydrate Program	DE-FOA-0000668	US DOE	each
84	Zero Emission Cargo Transport Demonstration	DE-FOA-0000669	US DOE	\$2M to \$10M each
85	ARPA-E	DE-FOA-0000670	US DOE	\$150M
86	Methane Opportunities for Vehicular Energy (MOVE)	DE-FOA-0000672	US DOE	

	Advanced Management and Protection			
87	of Energy-Storage Devices (AMPED)	DE-FOA-0000675	US DOE	\$30M
88	Solid State Energy Conversion Alliance (SECA) Core	DE-FOA-0000677	US DOE	\$500K for each
89	National Laser Users' Facility (NLUF) Program	DE-FOA-0000681	US DOE	\$3.2M
90	Bio-Oil Stabilization and Commoditization	DE-FOA-0000686	US DOE	\$15M
91	Accident Tolerant Fuel (DRAFT)	DE-FOA-0000692	US DOE	\$10M
92	Office of Advanced Scientific Computing Research (ASCR) Scientific Collaborations at Extreme- Scale	DE-FOA-0000695	US DOE	\$4.7M each
93	Sustainable Cities: Urban Energy Planning for Smart Growth in China and India	DE-FOA-0000697	US DOE	\$750k each
94	2012 Mathematical Multifaceted Integrated Capability Centers (MMICCs) Small Scale Coal-Biomass to Liquids	DE-FOA-0000698	US DOE	\$9M
95	(CBTL) Production and Feasibility Study of a Commercial Scale CBTL Facility	DE-FOA-0000703	US DOE	\$3M
96	In-Water Wave Energy Conversion (WEC) Device Testing Support	DE-FOA-0000705	US DOE	\$500k each
97	Theoretical Research in Magnetic Fusion Energy Science	DE-FOA-0000707	US DOE	\$4.5M
98	Implementation Initiatives to Advance Alternative Fuel Markets	DE-FOA-0000708	US DOE	\$1.2M
99	Technology Research, Development, and Tools for Clean Biomass Cook Stoves	DE-FOA-0000709	US DOE	\$7M
100	Development of LWR Fuels with Enhanced Accident Tolerance	DE-FOA-0000712	US DOE	\$10M
101	Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR)	DE-FOA-0000715	US DOE	\$7M
102	Novel Sensing and Monitoring Technologies for Subsurface Detection of CO ₂	DE-FOA-0000732	US DOE	\$5M
103	EERE Postdoctoral Research Award Application	ORISE	US DOE	

104	SunShot Initiative Postdoctoral Research Awards		US DOE	
105	Proliferation Detection Research	DE-FOA-0000568	US DOE & NNSA	\$20M
	Beginning Farmer and Rancher	USDA-NIFA-BFR-		
106	Development Program	003541	USDA	\$19M
				USDA-
				NIFA: \$25M;
	Biomass Research and Development		USDA and US	US DOE:
107	Initiative	DE-FOA-0000657	DOE	\$10M

APPENDIX D – IP CATALOG BY UNIVERSITY

FLORIDA ATLANTIC UNIVERSITY

Technologies Available for Licensing

ENERGY

<u>Marine</u> Retrofit Cathodic Protection - Software for Marine Pipelines Software for the Design of Cathodic Protection Systems for Deep Water Risers Synchronous Laser Line Scan Imaging

FLORIDA INTERNATIONAL UNIVERSITY

Technologies Available for Licensing

ENERGY

<u>Algae</u> Novel Library of Native Algae Species with Beneficial Health Effects

CLEAN-TECH

<u>Computer</u> 3-D Magnetic Memory

FLORIDA STATE UNIVERSITY

Technologies Available for Licensing

ENERGY

<u>Solar</u>

A High-Efficiency Multi-junction Photovoltaic Cell for Harvesting Solar Energy Triple-Junction Solar Cells for Solar Energy Harvesting Inflatable Solar Energy Collector (the "Solar Sausage")

<u>Wind</u> Multi Piece Wind Blades, HPMI

<u>Fuel Cells</u> <u>Alkaline Membrane Fuel Cell</u> <u>High Performance Fuel Cell</u>

CLEAN-TECH

<u>Mechanical</u>

<u>Solderless Joint Technology</u> <u>Bidirectional Linear Nanoactuator Powered by Biomolecular Motors</u> Sharing Cyrogenic Cooling Systems Between Large and Auxiliary Devices

<u>Materials</u>

Carbon Nanotube and Polymeric Thin Film Assemblies for Pressure Sensing and Mapping Improved Fire Retardant Materials High Efficiency Ion Exchange in Zeolites

Computer - Communication

The SPOT Method for Detecting Compromised Computers in a Network Method to Improve Processing Efficiency with Instruction Register File

UNIVERSITY OF CENTRAL FLORIDA

Technologies Available for Licensing

<u>ENERGY</u>

Solar and Thermo Electric

Improved Manufacturing of Thin Film Solar Cells With Highly Efficient Energy ConversionHybrid PV/Thermal Solar Cell with Significantly Increased Efficiency and Longevity Shape Memory Alloy Based Thermal Conduction Switch for on Demand Heat Transfer Compact, Lightweight and Highly effective Recuperative Heat Exchanger Synthesis of Core/Shell/Shell Quantum Dots with Improved Luminescent and Semi-Conducting Properties For Bio Imaging and Solar Cell Applications

<u>Biomass</u>

Solid Acid Catalyzed Hydrolysis of Cellulosic Materials

<u>Energy Storage</u>

Power, Distribution, Smart Grid, Communication

The Combination of Linear and Adaptive Non-Linear Control for Fast Transient Response in Highly Efficient Voltage Regulators and DC-DC Converters

Active Transient Voltage Compensator for Improving Fast Transient Response in DC to DC Converters

<u>Highly Efficient DC-DC Converter with a Coupled-Inductor Current-Doubler Topology</u> <u>Silicon Controlled Rectifier Layout Topology for High-Voltage Electrostatic Discharge</u> <u>Applications</u>

Built Environment and Energy Efficiency

High Efficiency Twisted Air Conditioner Condenser Fan Blades and Hub with Performance Enhancements Long Lasting Anti-Mildew/Fungal Coating for Roofs, Buildings and Pools

<u>Marine</u>

Highly Efficient Method for Generating, Transmitting and Receiving Electrical Power via any Heat Source including Hydrothermal Ocean Vents

Fuel Cells and Hydrogen

Increased Efficiency in Hydrogen Production Using a Solar Metal Sulfate Based Water Splitting Cycle

Inexpensive Method for Producing High Purity Hydrogen from Water and Other Hydrogen Containing Compounds

Super Absorbent Palladium Filled Carbon Nanotubes for the Storage and Detection of Hydrogen Gas

Efficient Closed-Loop Method of Producing Hydrogen Fuel from Landfill Gas and Biomass Feedstocks Low Energy Electromechanical Method for Removal of Carbon Monoxide from Hydrogen Streams for Fuel Cells

Reusable Visual Hydrogen Detecting Compound Capable of Attachment to Numerous Substrates (Polymers, Ceramics and even Tape)

Method For Zero Emission Liquid Hydrogen Production From Methane Sources and Landfill Gas Process for Efficient Production of Pure Hydrogen Gas with Reduced CO₂ Emissions Fast and Reliable Hydrogen Generation Utilizing a Fixable Catalyst and Borohydride Solutions Portable Hydrogen Generator for Coupling with Currently Utilized Fuel Cell Technologies

Water Desalination

Microtextured Superhydrophobic Membranes for High Flux Water Desalination

CLEAN-TECH

<u>Environment</u>

Air <u>Use of Oxide Nanoparticles to Reduce Soot Emissions and Increase Combustion Engine</u> <u>Efficiency</u> <u>Airborne Contamination Detection via Optical Waveform Matching</u> <u>Compact and Highly Sensitive Gold Nanorod Sensor for Detecting Mercury in Both Water and Air</u>

Waste

Sorption and Filtration Media Mixes and Systems For Passive, Inexpensive Removal and Treatment of Wastewater and Stormwater

Oil Spills

Filamentous Carbon Particles for Cleaning Oil Spills

<u>Sensors</u>

Micro Electro-mechanical Room Temperature Hydrogen Sensor Highly Selective and Cost Efficient Hydrogen Nanosensor Utilizing a Single ZnO Nanorod A Nano-Ceria Based Regenerative Radical Sensor Ultra High Temperature Micro-Electro-Mechanical (MEMS)-Based Smart Sensors for Monitoring Gas Turbines and other Similar Extreme Environments Fabrication of Nano-Scale Temperature Sensors and Heaters Gas Permeable Matrix for Chemochromic Compounds with Enhanced Hydrogen Sensing Performance

Lasers & Optics

Rapid Scanning Optical Interferometer for Diagnostics and Manufacturing Highly Reliable High-Capacity Free-space Optical Communication with Partially Coherent Beams

Nanoparticle Coated Substrates for Increasing Rates of Chemical Reactions with Laser Irradiation Eliminating the Need for Expensive Heating Elements High Speed, Digitally Controlled and Polarization Based Optical Scanner Capable of Scanning in Three Dimensions Signal Processing using Spectrally Phase-Encoded Optical Frequency Combs for High Speed Computing and Pattern Recognition

Effective Laser Plasma Source for Extreme Ultraviolet Lithography Using Water Droplet Target System

Highly Efficient Magnetic Foil Trap for Charged Particle Shielding

Highly Efficient Systems and Methods for Measuring Ultra-Short Light Pulses

High Intensity Mega Hertz Mode-Locked Laser

Temperature Independent Narrow Spectrum Lasers

Gain-guided Optical Fiber Laser

Inexpensive and Re-useable Liquid Crystal Power Meter for Quickly Measuring Laser Beam Intensity and Profile

Coupling of Diodes and Laser Chips to Fiber Optic Waveguides with Increased Efficiency Composite Sol-gel Hybrid Optical Coating for Infrared (IR) Applications

Fiber Optic Photonically Controlled Ultrasonic Probe

Wavelength Independent Polarization Rotator with a Wide Field of View

Ultra-broadband Frequency Swept Lasers

Method of Producing High Quality Durable Laser Diode Arrays for Significantly Enhancing Disk Lasers

Modified Wurtzite Structure Oxide Compounds as Substrates for III-V Nitride Semiconductor Epitaxial Thin Film Light Emitting Diodes and Laser Diodes

Bulk Semiconductor Lasers at Sub-millimeter/Far Infrared Wavelengths Using a Regular Permanent Magnet

Water Laser Plasma X-Ray Target Source

<u>Materials</u>

Oxidase Activity of Polymeric Coated Cerium Oxide Nanoparticles

Novel Method for Creation of Multi-wall Carbon Nanotubes as Super Efficient Electron Field Emitters in Flat Panel Displays and Electron Microscopes

Composite Materials and Coatings Created by an Efficient Dispersion of Carbon Nanotubes in Copolymer Solutions

<u>Ultra Strong and Ultra Conductive Carbon Nanotube Reinforced Metal Composites</u>

Carbon Nanotube with a Graphitic Outer Layer for Use with Atomic Force Microscopy and as an Electron Emitter

Nanoparticles of Cerium Oxide Having Potent Antioxidant or Superoxide Dismutase Activity

Dispersion of Carbon Nanotubes in Polymer Matrices for Creation of Highly Conductive and Mechanically Strong Nanocomposites

Inexpensive Room Temperature Synthesis of High Quality Zirconia Powders for Materials Applications

Metal Nanoparticle Polymer Composites with Electronic, Computer and Adhesive Applications Nanoparticle Coating that Increases the Oxidation Resistance of Stainless Steel at Extremely High Temperatures

Highly Effective Method of Predicting Optical Properties and Physical Characteristics to Formulate Optimum Coating System

Synthesis of Nanoparticles with Enhanced Thermal Stability

Debris-Less and Spark-Free Shape Memory Alloy Based Release Mechanism Solid Propellant Burn Rate Optimization Using a Nano-Titania Additive Method of Generating Frequency Tunable Resonant Scatterers

Low Coherence Apparatus for Non-Invasive Real-Time System Analysis and Process Control Method and Apparatus for Three-Dimensional Carbon Fiber Production

Sol-Gel Coating Method Which Significantly Reduces Water Content and Increases the Coating's Efficiency

Inexpensive Method for Bulk Manufacture of Crack-Free Ceramics at Reduced Temperatures Micro-Fluidic Device for the Creation of Hand-Held Portable Water Sensor

Inexpensive Method for Producing Whisker Formations on Metallic Fibers/Substrates and Strongly Adhering Catalysts for Filtration Applications

Inexpensive Synthesis of Carbon Nanotubes and Nanofilaments via Electrochemical Deposition Pure Silicon Photonic Crystal Fiber Fabrication via Magnesiothermic Reduction for Operations in the Mid-IR Spectrum

Highly Efficient Magnetic Foil Trap for Charged Particle Shielding

Inexpensive One-Step Rapid Manufacturing of Metal and Composite Parts and Prototypes Thin Film Deposition of Silicon Crystalline Layers on Polymer Substrates at Decreased

Temperatures

Photosensitive Polymeric Material for High Density 3-D Optical Data Storage

Inexpensive and Highly Sensitive Amorphous Metal Alloy for Electronic Article Surveillance (EAS) Systems

Highly Efficient Method for Growing Diamond Thin Film on a Substrate at Low Temperatures Highly Efficient 1.3µm Lasers Using Nd³⁺ doped Apatite Crystals

Highly Efficient Microwave assisted Formation of Sulfonium Photoacid Generators (PGAs) for use in Photolithography and Coatings Applications

Ultra Compact, High Current and High Temperature Semiconductor Packaging

Magnetic Components for the Manufacture of Low Cost On-Chip Power Supplies

Dual-Polarity Electrostatic Discharge Protection for Sub-Micron, Mixed Signal, CMOS/BiCMOS Technologies

Reliable ESD Protection Device and Method for Advanced Sub-micron CMOS Technologies

Efficient Liquid Droplet System as Plasma Source for EUV, XUV, and X-Ray Wavelength Emissions

Efficient Plasma Source for EUV, XUV, and X-Ray Wavelength Emissions Produced from Liquid Metal and Nanoparticles Solutions

Highly Precise Advanced Droplet and Plasma Targeting System

Method for Increasing Thermal Conductivity of a Substrate

<u>Signal Processing</u>

<u>Classification/Recognition of One or Multidimensional Signals Utilizing a Self-Designing</u> <u>Intelligent Signal Processing System Capable of Evolutional Learning</u> <u>Multi-Sensor (Multi-Sensing) Surface Acoustic Wave Network Utilizing Orthogonal Frequency</u> <u>Coding for Increased Performance and Security</u>

Data Compression of One or Multidimensional Signals Utilizing an Energy Based Split Vector Quantizer via Multiple Transform Domain Representations

Hybrid Photonics Modules for Variable Time Delay Signal Processing

Chromatic Dispersion Compensation for Optical Communications

Dual Opto-Electronic Precision Clocking Protocol for Optical and Electronic Systems

Improved Optical Communications with Significantly Reduced Cost using Polarization Diversity Transmission

Optical Multichannel Signal Regeneration

Regeneration of Differential Phase-Shift-Key Optical Modulated Signals

An Optimal Signal Processing Algorithm/System That Will Allow Complex Signals to Adapt to Time-Changing/Unknown Environments

Methods and Devices for Interference Cancellation in Radio Frequency Communication Systems

<u>Mechanical</u>

Miniature High Speed Compressor Having Embedded Permanent Magnet Motor

<u>Electrical</u>

Logic Device Design and Evolvable Hardware On-Chip Structure for Protecting Integrated Circuits from Electrostatic Discharge (ESD)

Nano/Micro Devices

Ultra Compact Micro-Lens Imaging System for High Quality Magnification within a Compact Space

Highly Efficient Nanoparticle Seeded Short-Wavelength Discharge Source

Zinc Oxide Semiconductor Nanotubes with Paint-brush like Structures for use in Electronics and Quantum Computing

Large Scale Synthesis of Single Crystalline Ultra-long Semiconducting Nanowires for Improved Electronic and Optoelectronic Devices

A Passive Micro-Mixer for Use With Micro-Fluidic Sensors in Medical, Pharmaceutical and Chemical Applications

Highly Efficient Nanoparticles Generator

Novel Method for Creating Carbon Nanotubes Collimators

Optical Display Devices

<u>Optical Aberration Correction via Aberration Generation</u> Energy Efficient and Reduced Temperature White Light Generation by Up-conversion of Rare-

Earth Materials Utilizing an Infrared Light Source

High Resolution Full Color Integrated Semiconductor Display

Resonant Cavity to Enhance the Efficiency of IR to Visible Light Conversion for Use in High Resolution Displays

Display Design Suitable for Projection Displays with an Increased Color Gamut

#	User Facility	Location
1	Southeast National Marine Renewable Energy Center	Florida Atlantic University - Boca Raton
3	Wall of Wind Testing Facility (WoW)	Florida International University – Miami FL
2	Advanced Materials and Engineering Research Institute (AMERI)	Florida International University – Miami FL
	Plasma Spray Forming Laboratory	Florida International University – Miami FL
4	Aeropropulsion, Mechatronics and Energy Building (Coming Soon)	Florida State University, Tallahassee FL
5	Center for Advanced Power Systems (CAPS)	Florida State University, Tallahassee FL
6	Institute for Energy Systems, Economics and Sustainability (IESES)	Florida State University, Tallahassee FL
7	Future Fuels Institute (Coming Soon)	Florida State University, Tallahassee FL
8	High Magnetic Field Laboratory	Florida State University, Tallahassee FL
9	Photovoltaic – Module Testing and Certification	Florida Solar Energy Center, Cocoa FL
10	Photovoltaic Materials Laboratory	Florida Solar Energy Center, Cocoa FL
11	Solar Thermal Collection Test Laboratory	Florida Solar Energy Center, Cocoa FL
12	Solar Thermal Systems Test Laboratory	Florida Solar Energy Center, Cocoa FL
13	Advanced Energy Research Division (AERD) Labs	Florida Solar Energy Center, Cocoa FL
14	Manufactured House Laboratory	Florida Solar Energy Center, Cocoa FL
15	Building Science Laboratory	Florida Solar Energy Center, Cocoa FL
16	<u>Flexible Roof Facility</u>	Florida Solar Energy Center, Cocoa FL
17	Flexible Residential Test Structures	Florida Solar Energy Center, Cocoa FL
18	Climate-Controlled A/C Laboratory	Florida Solar Energy Center, Cocoa FL
19	Materials Characterization Facility	University of Central Florida, Orlando FL
20	Advanced Microfabrication Facility	University of Central Florida, Orlando FL

APPENDIX E – FESC USER FACILITIES

21	NanoScience Technology Center (NSTC)	University of Central Florida, Orlando FL
	The sector of th	
22	<u>CREOL – The College of Optics and Photonics</u>	University of Central Florida, Orlando FL
23	Florida Institute for Sustainable Energy - Energy	University of Florida, Gainesville FL
	<u>Tech Incubator</u>	
24	<u>UF Biofuel Pilot Plant</u>	University of Florida, Perry FL
25	<u>UF Biofuel Pilot Plant, Perry FL</u>	University of Florida, Perry FL
26	Nanoscience Institute for Medical & Engineering	University of Florida, Gainesville FL
	Technologies and Nanoscale Research Facility	
27	Wayne K. and Lyla L. Masur HVAC Laboratory	University of Florida, Gainesville FL
28	Major Analytical Instrumentation Contor	University of Florida, Cainemville Fl
20	Major Analytical Instrumentation Center	University of Florida, Gainesville FL
29	Particle Engineering Research Center (PERC)	University of Florida, Gainesville FL
30	USF Thin Film Pilot Line (Coming Soon)	University of South Florida, Tampa FL
31	USF Nanotechnology Research and Education	University of South Florida, Tampa FL
	<u>Center (NREC)</u>	
32	Oak Ridge Associated Universities (ORAU)	Florida Institute of Technology
33	Institute for Energy Systems (IES)	Florida Institute of Technology
34	Harris Institute for Assured Information (HIAI)	Florida Institute of Technology
35	Institute for Research on Global Climate Change	Florida Institute of Technology
36	Center for Remote Sensing (CRS)	Florida Institute of Technology
37	National Center for Hydrogen Research (NCHR)	Florida Institute of Technology
38	<u>Collaborative International Research Centre for</u> <u>Universal Access (CIRCUA)</u>	Florida Institute of Technology
39	<u>Center for High Resolution Microscopy and Imaging</u> (CHRMI)	Florida Institute of Technology
40	<u>Center for Ferrate Excellence (COFE)</u>	Florida Institute of Technology
41	<u>Center for Corrosion and Biofouling Control</u>	Florida Institute of Technology
42	(CCBC) Federal Aviation Administration Center of	Florida Institute of Technology
	Excellence for Commercial Space Transportation	
43	<u>Center for Entrepreneurship and New Business</u>	Florida Institute of Technology
44	Development (CENBD) Wireless Center of Excellence (WICE)	Florida Institute of Technology

45	Florida Center for Automotive Research (FCAR)	Florida Institute of Technology
46	<u>College of Engineering Center for Space</u> <u>Commercialization</u>	Florida Institute of Technology
47	Microelectronics Laboratory	Florida Institute of Technology
48	Laser, Optics and Instrumentation Laboratory (LOIL)	Florida Institute of Technology
49	Wind and Hurricane Impacts Research Laboratory (WHIRL)	Florida Institute of Technology
50	Dynamic Systems and Controls Laboratory (DSCL)	Florida Institute of Technology
51	Robotics and Spatial Systems Laboratory (RASSL)	Florida Institute of Technology
52	Ralph S. Evinrude Marine Operations Center	Florida Institute of Technology

Florida Atlantic University

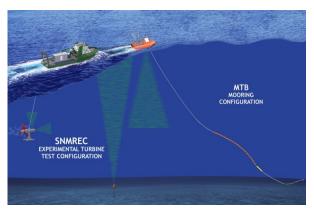
Southeast National Marine Renewable Energy Center

Web Site Link: <u>http://snmrec.fau.edu</u>

Director: Sue Skemp

<u>Contact Information</u> Email: <u>snmrec@fau.edu</u> Phone: 561-297-0956

Description


The Southeast National Marine Renewable Energy Center (SNMREC) at Florida Atlantic University is investigating the challenge of harnessing the power of the Gulf Stream for the generation of base load electricity, a unique contribution to a broadly diversified portfolio of renewable energy for the nation's future. Working in a systematic fashion toward the implementation of a full-scale, at-sea testing facility for industrial prototypes, current work includes developing testing infrastructure and protocols for components and complete generating systems and, in the process, fielding critical environmental monitoring systems so that the nature and sensitivity of the resource itself can be understood and effects of single-system deployments can be examined before commercial-scale arrays are designed. The SNMREC's strategy to accelerate commercial development of Marine & Hydrokinetic (MHK) projects includes technology R&D, testing, environmental research and measurement, policy, regulatory, and economic research, and education and outreach.

Lab Capabilities: In-lab technology testing is underway with scaled generator dynamometer capabilities which not only provide a platform to test offshore electrical systems before

testing offshore at larger scales.

use, but also simulate offshore grids. Corrosion and bio-fouling facilities allow for investigation of new materials and coatings which will be necessary to ensure the efficacy of long term commercial device arrav deployments, and a recirculating flume tank is used to determine early-stage proof-of-concept and to test mooring and device dynamics before greater expense and risk is incurred **Open Water Capabilities**: An offshore scaled device test berth (approximately 12 nm offshore of Ft. Lauderdale, FL) is under construction and will be installed for up to 100kW max instantaneous power production and/or 7m rotor diameter turbine testing. This initial group of industrial devices will provide insight into individual device extraction methods, dynamics, and basic system operability. A generic 20kW experimental research turbine is also under construction which will allow for subsystem or component testing and development. In addition, it will provide methodology and support infrastructure available for commercial 1:20 scale prototype

Fee Schedule

device testing.

Facility use is negotiated on a per-proposal basis and can include analysis and test design/planning services.

Florida International University

Wall of Wind Testing Facility (WoW)

Website: http://wow.fiu.edu

Contact Information

Dr. Arindam Gan Chowdhury, Laboratory Director Email: <u>chowdhur@fiu.edu</u> Phone: (305) 348-0518

Roy Liu-Marques, Testing Services Email: <u>rliumarq@fiu.edu</u> Phone (305) 348-4392

Description

The 12-fan Wall of Wind (WoW) at FIU is the largest and most powerful university research facility of its kind and is capable of simulating a Category 5 hurricane – the highest rating on the Saffir-Simpson Hurricane Wind Scale. For more than a decade, FIU researchers and engineers have planned, designed and redesigned numerous concepts and models that have all contributed to the science and technology behind this state-of-the-art machine.

Due to increased demand for higher wind speed testing, FIU has taken yet another step forward with its 12fan WoW. The new system is capable of performing controlled and repeatable to-scale testing in flows that replicate the type of CAT 5 level winds seen during Hurricane Andrew – one of the costliest storms in US history. This facility will not only fill the void where most current win-structure experiments fail, it has the potential to be as influential to wind engineering as crash testing is to the automobile industry.

FIU brings together the critical elements of wind testing to achieve comprehensive results for its clients. To do this, an expert team of wind engineers and scientific researchers integrates the unique capabilities of the Wall of Wind and the Titan America Structures Lab with the analytical tools of Computational Fluid Dynamics (CFD) simulation. At the WoW, tests can be described by three categories: 1) non-destructive (aerodynamic), 2) destructive (failure) and 3) wind-driven rain. For the non-destructive tests, a comprehensive instrument inventory is available to capture data of wind-induced forces, moments, strains, pressures, displacements, among others.

Fee Schedule

To be determined by the scope of work.

Advanced Materials and Engineering Research Institute (AMERI)

Web Site Link: <u>http://ameri.fiu.edu/home/About.html</u>

Contact Information

Dr. Arvind Agarwal, Director, AMERI and Professor of Materials Engineering *Email:* <u>agarwala@fiu.edu</u> *Phone:* (305) 348-1701 Fax: (305) 348-1932 Mr. Neal Ricks, Manager, AMERI Email: <u>ricksn@fiu.edu</u>

The Advanced Materials Engineering Research Institute (AMERI) provides an open access equipment infrastructure to support materials research and engineering over a broad range of technology and capabilities. The Institute provides analytical instrumentation, materials characterization, and process development laboratories to support faculty and industry in the development and characterization of new materials over the continuum from the nanoscale to bulk materials.

The Analytical Instrumentation Laboratory contains a field emission scanning electron microscope (FESEM), a 200 kev Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), X-ray diffraction, thermal (DSC, TGA, DMA, dilatometer flush diffusion, and mechanical testing (uniaxial/biaxial Instron, creep). Process Development laboratories for ceramic processing (sol-gel, tape casting, milling), polymer processing, metal processing, and arc melting, thermal processing (air, vacuum, hydrogen, controlled atmosphere furnaces) are available to support faculty and student researchers.

The Institute contains the Motorola Nanofabrication Research Facilities, which is supported by a class 100 clean room and nanofabrication capabilities including e-beam lithography and optical photolithography. Fabrication of nano/micro electromechanical systems (N/MENS) can be accomplished by a combination of nanolithography, reactive ion etching, and thin film deposition by a variety of techniques (e-beam, sputtering, filament evaporation, cvd).

In addition to supporting research within the graduate program in materials science within the Department of Mechanical and Materials Engineering, the Institute supports faculty across all departments (physics, chemistry, geology, biology) in materials based research.

<u>Fee Schedule:</u> Please visit AMERI website <u>http://ameri.fiu.edu/</u>

Plasma Spray Forming Laboratory

Web Site Link: <u>http://web.eng.fiu.edu/agarwala/laboratories/PlasmaFormingLab.html</u>

Contact Information


Dr. Arvind Agarwal, Department of Mechanical and Materials Engineering

Email: <u>agarwala@fiu.edu</u> *Phone:* (305) 348-1701 Fax: (305) 348-1932

Description

This lab makes use of plasma-based techniques to synthesize:

- Near Net Shape Structures by Rapid Prototyping
- Bulk Nanostructured Components
- Advanced Ceramic and Metallic Nanocomposites
- Multilayered Functional Coatings
- Synthesis of Nanostructured Composite Powders
 <u>Click Here for Demo</u>

Plasma Spray Forming Laboratory is a 1300 square feet facility. The equipment list is given below:

- Praxair Plasma Spray System
- Plasma Power Source Model PS-1000
- Plasma Control Console Model 3710
- Powder Feeder Model 1264
- Plasma Spray Gun Model SG-100 (internal and external powder injection capability)
- Localized inert shroud creating facility
- Plasma Spray Booth with CNC turntable
- Fanue S 100 Robot with RF controller
- Three-axis Gantry Robot
- Thermach AT-1200 Powder Feeder, 0-15 RPM
- Accuraspray-g3 Single Head Plasma Inflight Sensor
- Raytek Optical Pyrometer (-10 to 1200C) with integrated software and PC for continuous temperature monitoring
- 4-channel B-Type (0 to 1700C) and K-Type (-200 to 1250C) Thermocouple with OM-CP-QUADTEMP Data Acquisition System and OM-CP-IFC110 Windows Software
- Grit Blaster
- Ultrasonic Cleaning Bath
- Density Measurement Kit
- ER Advanced Ceramics 755RMV Jar Mill
- Sieves and Sieve Shaker
- Work Bench with all machine tools
- Rotating Ball Mills and blenders
- Low Speed and High Speed Diamond Saws
- Positron Adhesion Tester
- Optical Microscope (upto 1600X)
- Electrostatic Spray Facility for Polymer Coating Synthesis

Computational Facilities in Plasma Forming Laboratory:

- 2 Pentium IV, 3.40 GHz, 2 GB RAM desk top computer
- 3 Pentium IV, 2.6 GHz desk top computers
- 1 Pentium IV, 2 GHz notebook computer
- 2 Pentium IV, 3.20 GHz, 3.5 GB RAM desk top computer
- Software in Plasma Forming Laboratory
- CaRIne Crystallography 4.0: For geometric visualizations of interfaces, surfaces, crystals, real lattices in 3D, reciprocal lattices in 3D and 2D and for comprehending stereographic projections and X-ray diffraction patterns.
- FactSage 6.0: A thermochemical software and database package to understand phase diagrams, feasibility of chemical reactions, compel equilibrium in multicomponent, and multiphase systems.
- Hyper Chem 7.5: Modeling software to compute thermodynamic energies based of molecular mechanics and dynamics models for various configurations and crystal geometry.
- SimDrop 3.0 software: For simulating splat formation with thermal and kinetic history as experienced in thermal spraying.

Fee Schedule:

Please contact Prof. Agarwal at agarwala@fiu.edu

Florida State University

Aeropropulsion, Mechatronics and Energy Building (COMING SOON)

Web Site Link: <u>http://www.eng.fsu.edu/me/research/ame.html</u>

<u>Contact Information</u> Dr. Chiang Shih, Chair <u>Email: shih@eng.fsu.edu</u> Phone: (850)410-6321 Fax: (850)410-6337

Description

This 60,000-square-foot state-of-the-art facility supports advanced research in aerospace and aviation, mechatronics (robotics) and sustainable energy engineering. The Aero-Propulsion, Mechatronics and Energy Building houses laboratories, equipment, offices and other infrastructure necessary to carry out the university's research mission in several key areas seen as crucial to the economic development of the state and nation.

Among the organizations that is housed in this \$23 million facility are Florida State's Energy and Sustainability Center (ESE) which features an energy material processing lab, dry room for battery assembly; Institute for Energy Systems, Economics and Sustainability (IESES); the university's Center for Intelligent Systems, Control and Robotics (CISCOR); and the Florida Center for Advanced Aero-Propulsion (FCAAP), a State University System Center of Excellence that is headquartered at FSU.

As its name indicates, the research that take place within the Aero-Propulsion, Mechatronics and Energy Building focuses on three key areas:

- Aero-propulsion: The discipline of aero-propulsion deals with transportation systems and other objects that move through air, influencing the design and fabrication of aircraft, spacecraft, automotive transport, and all manner of vehicles in motion. The relevant research areas cover fundamental science topics such as aerodynamics, fluid mechanics, acoustics, thermal physics and turbulence, as well as practical applications such as combustion improvement, active control of flow separation, supersonic jet noise suppression, lift/thrust enhancement and drag reduction.
- **Mechatronics**: The term mechatronics, a combination of mechanics and electronics, was first used in Japan in the 1960s. From a technical perspective, it is the synergistic integration of mechanical, electrical, control and computer systems to create functional products. Mechatronics has become the enabling technology responsible for industrial innovations in numerous economic sectors, including automobiles, alternative energy, aerospace, electronics and defense. The field of mechatronics generally covers topics such as robotics, micro-electro-mechanical-systems (MEMS), intelligent systems, automated guided vehicles and smart materials.
- **Energy**: Seeking new energy resource that are more efficient and cost-effective and that minimize effects on the environment is among the most critical issues that the world will have to grapple with in the 21st century. The Aero-Propulsion, Mechatronics and Energy Building houses research labs for organizations that are focused on exploring reliable, affordable, safe and clean energy technologies, including projects such as Florida State's Off-Grid, Zero-Emission Building; solar-thermal systems; a photo bioreactor for algae growth; and fuel-cell and advanced battery technologies.

<u>Fee Schedule:</u> TBD

Center for Advanced Power Systems (CAPS)

Web Site Link: <u>http://www.caps.fsu.edu/</u>

Director: Dr. Steiner Dale

<u>Contact Information</u> Steve McClellan Email: <u>mcclellan@caps.fsu.edu</u> Phone: (850) 645-2157 Fax: 850-644-7456

Description

The 34,000 sq. ft. CAPS research, development, test and demonstration facility is located in Innovation Park in Tallahassee, Florida. CAPS is a multidisciplinary research center organized to perform basic and applied research to advance the field of power systems technology and provides a secure infrastructure and environment for all types of sensitive research. CAPS emphasis is on application to electric utility, defense, and transportation, as well as, developing an education program to train the next generation of power systems engineers. The research focuses on electric power systems modeling and simulation, power electronics and machines, control systems, thermal management, high temperature superconductor characterization and electrical insulation research. FSU also has The Energy and Sustainability Center which addresses challenging alternative energy issues through innovative solutions for consumers and industry. The Center promotes industry, government, and academia collaboration and participation in critical research activities moving beyond the stage of initial demonstration to commercialization.

Fee Schedule:

Facility use is negotiated on a per-proposal basis.

Institute for Energy Systems, Economics and Sustainability

Web Site Link: <u>http://www.ieses.fsu.edu/</u>

Director: Dr. David Cartes

<u>Contact Information</u> Email: <u>sims@ieses.fsu.edu</u> Phone: 850-645-9232

Description

The *Institute* is a public resource to carry out scholarly basic research and analysis in engineering, science, infrastructure, governance and the related social dimensions all designed to further a sustainable energy economy. The *Institute* unites researchers from the disciplines of engineering, natural sciences, law, urban and regional planning, geography, and economics to address sustainability and alternative power issues in the context of global climate change. IESES offers administrative and program support to researchers, partners and collaborators.

Grant Proposal and Administration Support: Proposal development, preparation and submission; grants management; requisition and authorization of payments of purchased items; reconciling ledgers, monthly financial reports, re-budgeting and budget amendments; office space, hiring staff and managing travel.

Program Services: Public and private sector resource identification and partnership development; interdepartmental and state-university wide resource development; promotion of our research partners and collaborators in print, electronic media and through participation in statewide, national and international conferences.

<u>Fee Schedule:</u> Negotiated on a per-proposal basis.

Future Fuels Institute (COMING SOON)

Web Site Link: www.Research.fsu.edu/ffi

Director: Dr. Chang Samuel Hsu

<u>Contact Information</u> Dr. Chang Samuel Hsu <u>Email: hsu@magnet.fsu.edu</u> Phone: (850) 644-9861 Address: 1800 E. Paul Dirac Dr. Tallahassee, FL 32310

Description

Future Fuels Institute, established at Florida State University is a global center of excellence working with renewable and difficult-to-refine oils for the production of fuels and chemicals. It is supported by sponsoring companies and collaborative entities (instrument companies, universities and research institutes) to develop advance and novel techniques for research applications and problem solving.

<u>Fee Schedule:</u> TBD

National High Magnetic Field Laboratory (NHMFL)

Web Site Link: <u>http://www.magnet.fsu.edu/about/</u> and <u>https://users.magnet.fsu.edu/</u> Director: Dr. Greg Boebinger <u>Contact Information</u> NHMFL has 7 user programs. The contact information for each user program is listed below.

Magnet Lab User Facilities			
Facility	Location	Director	Help With Requests
Advanced MRI and Spectroscopy	Gainesville	Joanna Long	Joanna Long
DC Field	Tallahassee	<u>Eric Palm</u>	Eric Palm
Electron Magnetic Resonance	Tallahassee	Stephen Hill	<u>Jurek Krzystek</u> <u>Andrew</u> <u>Ozarowski</u>
<u>High B/T</u>	Gainesville	Neil Sullivan	Neil Sullivan
Ion Cyclotron Resonance	Tallahassee	<u>Alan Marshall</u>	<u>Amy McKenna</u> Colleen Davis
<u>Nuclear Magnetic</u> <u>Resonance</u>	Tallahassee	<u>Bill Brey</u> <u>Tim Cross</u>	<u>Riqiang Fu</u> Zhehong Gan Ashley Blue
Pulsed Field	Los Alamos	<u>Chuck Mielke, Facility Director</u> <u>Jonathan Betts,</u> Head of the Pulsed Field User Program, Contact person to help with requests	<u>Chuck Mielke</u> Jonathan Betts

The **National High Magnetic Field Laboratory** offers the highest magnetic fields for use by the international community of scientific visitors. Many of the magnets and experimental techniques are highly specialized, yet broadly applicable to research in physics, materials science, chemistry, biochemistry, biology and even biomedicine. Every year over 1100 scientists and engineers use the National High Magnetic Field Lab facilities. Graduate students and Nobel laureates, researchers from academia and the corporate world, they travel from across the globe for a chance to work with the unique instruments and experienced staff at our three locations. First and foremost, the Mag Lab exists for these users and the cutting-edge research they conduct here as they seek to expand the boundaries of scientific knowledge. The Users Hub is dedicated to them and their needs. It is divided into two sections: <u>User Programs</u> and <u>User Services</u>.

User Programs: The Mag Lab has seven user programs located across three campuses. The lab also has a number of important <u>in-house research</u> programs that complement the user programs through development of new techniques and equipment.

Fee Schedule

Access to NHMFL magnets is open to all qualified scientists and engineers via a competitive proposal process. If a proposal is approved, facility usage is free of charge provided the researcher intends to publish the results in open literature. Proprietary research done at the Magnet Lab must enter into a cost sharing arrangement. All user facilities accept proposals throughout the year. The online system for submitting a proposal and requesting magnet time is located at <u>https://users.magnet.fsu.edu/</u>.

Florida Solar Energy Center

http://www.fsec.ucf.edu/en/

Photovoltaic – Module Testing and Certification

Web Site Link: http://www.fsec.ucf.edu/en/certification-testing/PVmodules/index.htm

Contact Information

Stephen Barkaszi Email: barkaszi@fsec.ucf.edu or pvmodule@fsec.ucf.edu Phone: 321-638-1473

Description

The Florida Solar Energy Center is required by Section 377.705 of the Florida Statutes to develop standards and certify all solar energy equipment manufactured or sold in Florida. To meet the requirements of the Florida Statutes, FSEC has developed a PV Module and PV System Certification program that protects the public interest and advances the use of renewable technologies. The objectives of the program are to:

- Provide Florida residents with reliable, safe and high quality PV system designs.
- Provide a means for consumers to obtain a summary of their certified PV system design including the installer's name, address, telephone number and Florida contractor's license number.
- Provide Florida consumers and/or agency officials with the expected power output of certified PV systems using accurate PV module performance ratings.
- Provide a PV system design approval certificate with a checklist that list the items that require compliance with National Electrical Code. The certificate and checklist can be used by local building officials for both the issuing of permits and the inspection of installed PV systems.

To satisfy these objectives, FSEC has developed a PV Module and System Certification processes. These certification processes are intended to be simple and straightforward.

Fee Schedule:

Facility use is negotiated on a per-proposal basis.

Photovoltaic Materials Laboratory

Web Site Link: http://www.fsec.ucf.edu/en/about/facilities/pv_mat_lab.htm

<u>Contact Information</u> Neelkanth Dhere Email: <u>dhere@fsec.ucf.edu</u> Phone: 321-638-1442

Description

Photovoltaic Materials Laboratory performs research in the areas of thin film solar cells for terrestrial & space application; Photoelectrochemical Water Splitting for Hydrogen Generation; High Voltage Bias Testing of Thin Film PV Modules; and Tribological coatings. The research details are given at the web site.

Fee Schedule:

Facility use is negotiated on a per-proposal basis.

Solar Thermal Collection Test Laboratory

Web Site Link: http://www.fsec.ucf.edu/en/certification-testing/STcollectors/index.htm

<u>Contact Information</u> Email: thermal@fsec.ucf.edu

Phone: 321-638-1426

Description

The FSEC testing program evaluates solar collectors to determine that they meet the certification standards. Testing and certification of both glazed (hot water) and unglazed (pool heating) collectors is a State of Florida-mandated activity. All collectors and systems sold or manufactured in Florida must be certified by FSEC. The details are given at the web site.

Fee Schedule

Testing fee information can be found at: <u>http://www.fsec.ucf.edu/en/publications/pdf/FSEC_Thermal_Test_Fees_2010_Final_17-May-10.pdf</u>

Solar Thermal Systems Test Laboratory

Web Site Link: http://www.fsec.ucf.edu/en/certification-testing/STsystems/index.htm

<u>Contact Information</u> Email: <u>thermal@fsec.ucf.edu</u>

Phone: 321-638-1426

Description

The FSEC testing program evaluates ICS (Batch solar water heater) and Thermosiphon systems to determine that they meet the certification standards. The Florida Solar Energy Center (FSEC) is responsible for approving all solar water heaters that are sold or manufactured in Florida. The system approval process was mandated by the Florida State Legislature as part of the Solar Energy Standards Act which required that beginning in 1980 all solar energy systems manufactured or sold in Florida meet standards established by FSEC.

The FSEC standards program has been designed to meet the intent of the legislation while also helping the Florida solar industry to develop quality products, aiding building departments in product approval, and instilling confidence in the consumer who chooses to use solar energy in their residence or business. The details are given at the web site.

Fee Schedule

Testing fee information can be found at: <u>http://www.fsec.ucf.edu/en/publications/pdf/FSEC_Thermal_Test_Fees_2010_Final_17-May-10.pdf</u>

Advanced Energy Research Division (AERD) Labs

Web Site Link: http://www.fsec.ucf.edu/en/about/facilities/hydrogen_fuelcell_lab.htm

Director: Dr. Ali Raissi

<u>Contact Information</u> Dr. Ali Raissi Email: <u>ali@fsec.ucf.edu</u>

Phone: 321-638-1407

Research activities of the FSEC's Advanced Energy Research Division (AERD) are carried out within three fully equipped laboratories (Class B & C – total of 5,000 square foot), and a 1,500 square foot field facility. These laboratories are:

- Alternative Fuel Lab
- Instrumentation Lab
- Fuel Cell Lab

These laboratories and the field facility meet and/or exceed the design and safety requirements imposed by the Florida State Fire Marshall and all the state and federal codes (NFPA 45 Standard on Fire Protection for Laboratories Using Chemicals, NFPA 50A Standard for Gaseous Hydrogen Systems at Consumer Sites, and NFPA 70 National Electric Code) for handling large volumes of hazardous and flammable gases and chemicals including both gaseous and liquid hydrogen. The field facility is fitted with explosion proof electrical systems and meets NFPA 50B Code "Liquefied Hydrogen Systems at Consumer Sites."

AERD labs are equipped with the state-of-the-art analytical instruments including: a JEOL GCmate-II GC/MS-MS for determining elemental compositions, unit's special features include: linked-scan MS/MS for structure determination, high-resolution selected ion monitoring (SIM), programmable temperature heated direct insertion probe with separate ion source chambers for EI and CI operation and for analysis of volatile solid samples, and link to NIST library search routines; two SRI 8810 gas chromatographs (GC) equipped with TCD, FID & FPD; a Shimadzu GC equipped with TCD & FID; a Perkin-Elmer (PE) GC equipped with TCD & FPD; a Varian refinery GC; a Buck Scientific GC; and a Dionex DX 500 Gradient Ion Chromatograph/ HPLC with AD20 absorbance detector; an Altamira AMI 200 catalyst characterization instrument capable of TPD-MS, TPR-MS, TPO-MS, and TPRx-MS; a Perkin-Elmer Spectrum 100 FTIR with Universal ATR Accessory (UATR); an Autoclave Engineers BTRS-jr lab reactor system; a CDS Analytical pyroprobe 1000 with three modes of operation; a PE Diamond Differential Scanning Calorimeter (DSC) equipped with Hyper DSCTM technology for automated unattended operation over the temperature range of -170°C to 300°C and fast heating and cooling rates (as high as 500°C/min); a PE Diamond TG/DTA-MS system equipped with ThermoStar bench-top quadrupole MS with closed ion source for mass range of 1-300 amu and a detection limit of less than 1 ppm.

Labs also house a Shimadzu UV/VIS scanning spectrophotometer; a Hach UV/VIS; an IR spectrophotometer; a PMI BET surface area analyzer; several PEM electrolyzers, three complete, fully automated (operating from LabView environment) thermovolumetric analyzers (ranging in size from 160 mL to 2 L); a Hiden Isochema HTP1-V volumetric sorption analyzer capable of operating at 100 bar and 500°C; a Hitachi TM3000 tabletop SEM; Ranson Digital Sonifier 450 W sonicator Model No. 450, EDP: 100-214-239; two 1 kW Newport solar simulators Model No. 91190-1000 (equipped with AM1.5 global, AM1.0 & 0.0 filters); two glove-boxes equipped with purification systems for reducing moisture and oxygen to the ppm level and vacuum systems with Schlenk glassware for handling materials under inert conditions; two Carver hot presses; a SPEX CertiPrep 8000M high-energy ball mill; and two Retsch ball mill units; two PARSTAT® 2273 potentiostats controlled by the PowerSuite software (Princeton Applied Research); complete electrochemical test equipment; assortment of computerized data acquisition and control systems; an induction furnace and a collection of ovens, autoclaves, AC and DC power supplies and assortment of pumps and balances.

The fuel cell lab is equipped with devices ranging from that needed for the MEA fabrication to complete insitu electrochemical diagnostic systems. There are four Scribner Associates test stands, several potentiostats and frequency response analyzers, and a one of a kind MEA Durability Test System, (MEADS) that allows long term testing of eight fuel cells, simultaneously. The in-situ electrochemical diagnostics facility includes a test stand, a load box and a frequency response analyzer – constituting a complete FC test station capable of using either 5 or 25 cm² single cell hardware. AERD's field facility houses the pilot-scale biomass gasification/Fischer-Tropsch synthesis plant. AERD's computational and modeling capabilities include: Gaussian '03, GaussViewTM, CAChe, AspenPlusTM CPS, FACTSage, FLUENT CFD platform and GE's GateCycleTM program.

The list of equipment in each lab is given below.

Alternative Fuel Lab (AERD Lab Room 101)	Instrumentation Lab (AERD Lab Room 103)
SRI 8610 C GC and	Retsch Ball Mill (2)
SRI 8610 A GC	Shimadzu UV-VIS
Denton Vacuum System	PE Diamond DSC
Ziess Microscope	Hach UV-VIS
Minolta CR-10 Colorimeter	Altamira AMI 200 TPD-MS
Varian GC-TCD/FID	PE Diamond TG/DTA-MS
PE Sulfur GC-FID/FPD	PMI BET
Shimadzu Refinery GC-FID	Dionex DX-500 IC-HPLC
Buck Scientific GC	Jeol GCmate-II GC-MS/MS
Varian 3400 GC-TCD/FID	PE Spectrum 100 FTIR
Chemiluminescence Analyzer	Hiden Isochema HTP1-V Volumetric Sorption Analyzer
Environics Multi-Gas Calibrator	Varian GC-MS (ion selective)
Glove box (2)	CDS Analytical Pyro-probe 1000
Spex Certi Prep Ball Mill	Autoclave Engineers BTRS-jr Lab Reactor
Fluent CFD Platform	Potentiostat Parstat 2273
Fuel Cell Lab (AERD Lab Room 109)	Newport Solar Simulator (2)
8-Channel FC MEA Durability Test System (MEADS)	Cryocooler & Accessories
Potentiostat (2)	Carver hot press (2)
Scribner Associates 850C Fuel Cell Test Stand (4)	Electrolyzers (3)
Teledyne Medusa	Ranson Digital Sonifier 450 W Model 450
	MEA Prep Unit
	Hitachi TM3000 Tabletop SEM

<u>Fee Schedule</u>

A mini proposal is requested from each applicant describing the service(s) needed. The fee will be determined based on the service needs. The proposal will be submitted to Dr. Ali Raissi at: ali@fsec.ucf.edu.

Manufactured House Laboratory

Web Site Link: http://www.fsec.ucf.edu/en/about/facilities/mhl.htm

Director: Rob Vieira

<u>Contact Information</u> Rob Vieira Email: robin@fsec.ucf.edu

Phone: 321-638-1404

The Manufactured Housing Laboratory (MH Lab) is a 1600 ft2 ENERGY STAR® manufactured home that will serve as a training center and building science laboratory.

It features two completely separate space conditioning systems, an in-the-attic duct system with a package unit heat pump, and a floor-mounted duct system with a split system heat pump. An interior duct system was also recently installed. The MH Lab is a real-world training and research center used to conduct system-level residential research and to demonstrate building problems and solutions. Researchers and students investigate topics such as airflow and pressure measurement, moisture control, methods of duct leakage testing and repair, ventilation strategies, and analysis and correction of indoor air quality source control problems.

Fee Schedule:

Facility use is negotiated on a per-proposal basis.

Building Science Laboratory

Web Site Link: http://www.fsec.ucf.edu/en/about/facilities/bldg_sci_lab.htm

Director: Rob Vieira

<u>Contact Information</u> Rob Vieira Email: robin@fsec.ucf.edu

Phone: 321-638-1404

Description

The Building Science Lab is unique in its ability to vary the building airtightness, air leakage and thermal boundary parameters in a controlled fashion and evaluate their interactions with both conventional and advanced HVAC systems. Its purpose is to advance the understanding of building science and proper application of HVAC equipment through research and training. The design of this building is based upon recent developments in building science and has the flexibility to address a wide range of issues. It has the ability to mechanically adjust infiltration rates with custom ventilation fans and it also has a modular wall on the west façade for testing solar heat gain. The Building Science Lab

is ideally suited to hands-on building science and HVAC systems training. In addition to housing the training, it serves as a live training model. Trainees see in real time the pressure and air flow response of the building as air flow rates, barriers to flow and pathways to flow are changed at the turn of a switch.

Fee Schedule:

Facility use is negotiated on a per-proposal basis.

Flexible Roof Facility

Web Site Link: http://www.fsec.ucf.edu/en/about/facilities/frf.htm

Director: Rob Vieira <u>Contact Information</u> Rob Vieira <u>Email: robin@fsec.ucf.edu</u>

Phone: 321-638-1404

The Flexible Roof Facility (FRF) is an FSEC Buildings Research division test facility in Cocoa, Florida designed to compare the performance of different residential roofing systems. The facility can evaluate five roofing systems at a time against a control roof with a vented attic and dark shingles. The intent of the testing is to evaluate how roofing systems impact summer residential cooling energy use and peak demand. To make these evaluations, each of the 6 separate attic "cells" is heavily instrumented with sensors measuring temperatures of the shingles, roof deck, attic space and

ceiling plane. Data are collected throughout the summer each year and then analyzed. The details are given at the web site.

Reserving a Test Cell: While FSEC uses several cells each year for ongoing research, there are typically two or more cells available for use by outside companies or organizations desiring to have a roof system or product tested. For more information on reserving an FRF test cell, <u>click here to contact Danny Parker</u>.

Fee Schedule

Our standard research contract for one cell of the Flexible Roof Facility is \$14,973. This price includes use of the cell, standard instrumentation and our standard report which will (at a minimum) compare the cell to a reference vented attic with a dark shingle roof and a reference vented attic with a white metal roof (see the 2003 FRF report at http://fsec.ucf.edu/en/publications/pdf/FSEC-CR-1475-04.pdf as an example). Tear off of the existing roof and installation of the new roof is not included in this price. Tear off and installation are the responsibility of the individual, organization or company reserving the test cell(s), and all roof work must be done by a licensed and insured contractor.

Flexible Residential Test Structures

 Web Site Link: http://blog.floridaenergycenter.org/echronicle/tag/flexible-residential-test-facility/ Director: Rob Vieira

 Contact Information

 Rob Vieira

 Email: robin@fsec.ucf.edu
 Phone: 321-638-1404

Description

Construction of the flexible residential test structures was completed in December 2011. The purpose of the two side-by-side test houses is to conduct side-by-side testing of varying residential energy efficiency strategies and/or systems and to have a base house in which to compare the measured results. A preliminary measurement of temperature during passive load conditions indicates the buildings track each other well. A number of DOE staff toured the facility when they visited the Florida Solar Energy Center in January 2011, after FSEC had been awarded a four year research contract in which the facility will play a significant role.

Completed flexible residential test structures on FSEC campus.

Fee Schedule: Facility use is negotiated on a per-proposal basis.

Climate-Controlled A/C Laboratory

Web Site Link: http://www.fsec.ucf.edu/en/about/facilities/cc_ac_lab.htm

Director: Rob Vieira

<u>Contact Information</u> Rob Vieira Email: <u>robin@fsec.ucf.edu</u>

Phone: 321-638-1404

Description

FSEC's on-site environmental facilities are capable of testing air-conditioners and heat pumps with cooling/heating capacities up to 3.5 tons. The facility (*photo right*) is made up of an indoor chamber, an outdoor chamber, and a computerized control room. The environmental chamber's indoor and outdoor conditions are maintained automatically with a laboratory grade data acquisition and control system. Full automation allows complete flexibility for parametric testing. The control room houses a data acquisition and control system and is responsible for monitoring instrumentation output, controlling psychrometric chamber temperature and humidity conditions, and controlling compressor, indoor fan, and outdoor fan speeds.

Fee Schedule:

Facility use is negotiated on a per-proposal basis.

University of Central Florida

<u>Materials Characterization Facility (MCF) - Advanced Materials Processing and Analysis Center</u> (<u>AMPAC</u>)

Web Site Link: <u>http://www.ampac.ucf.edu/facilities/MCF.php</u> Available equipment techniques are listed at the web site.

Director: Dr. Sudipta Seal

<u>Contact Information</u> Email: <u>ampacmcf@ucf.edu</u> Phone: 407-882-1500 Fax: 407-882-1502 Address: 12443 Research Parkway, Suite 304, Orlando, FL 32826

Description

The Materials Characterization Facility (MCF) is dedicated to providing researchers and industrial partners a place to perform characterization and analysis to advance research; classroom education and hands-on training in the use of state-of-the-art characterization equipment; user-friendly support services with expert advice and data interpretation; and to enhance competitiveness of industrial partners and boost economic development of the Central Florida region.

MCF occupies about 7,000 sq. ft. of space and is supported by 3 full-time research engineers and a full-time facilities coordinator. Collaboration with other Universities is encouraged.

AMPAC is an interdisciplinary research and education center for materials science and engineering located at the University of Central Florida (UCF). Our work intersects with research areas including biology, medicine, energy, microelectronics, and nanotechnology. Materials science and engineering (MSE) is an interdisciplinary field that impacts almost every application area. Finding or developing a material with the right properties, or with affordable fabrication costs, or appropriately characterizing the material composition and/or structure to enable development of specific material properties, is often the limiting factor and enabling technology in most applications.

AMPAC faculty, affiliated faculty, and graduate students conduct in-depth research in materials science and engineering to address the requirements of several applications including energy, microelectronics, nanotechnology, green energy, life sciences, optics, aerospace, and bioengineering with the goals of enhancing scientific understanding and promoting industrial development and economic growth. With research expenditures totaling more than \$3.6M per year, the UCF materials science and engineering research efforts are supported by a number of government agencies, including national laboratories, as well as private industries. The nine AMPAC faculty and 71 students alone author over 80 refereed publications and 100 presentations per year at national and international conferences.

Fee Schedule:

Facility use is negotiated on a per-proposal basis.

Advanced Microfabrication Facility - Advanced Materials Processing and Analysis Center (AMPAC)

Web Site Link: http://www.ampac.ucf.edu/facilities/AMF.php Available equipment techniques are listed at the web site Director: Dr. Sudipta Seal <u>Contact Information</u> Karen Glidewell Email: <u>Karen.Glidewell@ucf.edu</u> Phone: 407-882-1500

The Advanced Microfabrication Facility (AMF) is a multi-user cleanroom facility dedicated to provide university researchers and industrial and government partners the capabilities to perform cutting edge research, and training and education of students in the use of the available equipment for fabrication and testing of microdevices. AMF consists of a 600 sq. ft. class 100 facility and a 2500 sq. ft. class 1000 facility.

The AMF is supported by a research associate, a graduate student assistant, and a facilities coordinator to assist all users in use of and training on the AMF equipment. Collaboration of UCF researchers with other universities, government agencies, and industrial companies is strongly encouraged.

Fee Schedule:

Facility use is negotiated on a per-proposal basis.

NanoScience Technology Center (NSTC)

Web Site Link: <u>http://www.nanoscience.ucf.edu/index.php</u> and <u>http://www.nanoscience.ucf.edu/equipment/</u>

Director: Dr. Sudipta Seal

<u>Contact Information</u> Email: <u>nano@ucf.edu</u> Phone: 407-882-1578 Fax: 407-882-2819 Address: 12424 Research Parkway Suite 400 Orlando, FL 32826 (Research Pavilion 4th Floor)

Description

The NanoScience Technology Center (NSTC) was formed in 2005. The NanoScience Technology Center occupies the entire 4th floor of the Research Pavilion building in UCF's Research Park. It contains over 20,000 sq. ft. of advanced chemical, materials development, and biological laboratories in support of a wide range of multidisciplinary research projects.

The common goal and purpose of this center is to strongly promote interdisciplinary research. Research opportunities in areas as diverse as Green Energy, Functional Nanomaterials, Computer/Mathematical Simulations, Assistive Robotics, Quantum Dynamics, Bioimaging, NanoElectronics & NanoPhysics, Integrated Device Development and Advanced Materials have been explored. The equipment list is given at: *http://www.nanoscience.ucf.edu/equipment/*

Fee Schedule:

Facility use is negotiated on a per-proposal basis.

<u>**CREOL – The College of Optics and Photonics**</u>

Web Site Link: <u>http://www.creol.ucf.edu/Research/Facilities.aspx</u> Director: Dr. Bahaa Saleh, Dean

<u>Contact Information</u> Dr. Bahaa Saleh, Dean Email: <u>besaleh@creol.ucf.edu</u> Phone: 407-823-6800

The research activities of College of Optics and Photonics (COP) faculty span the spectrum from basic science and physics of optics, photonics, and related phenomena, to prototype development and demonstration of feasibility in applications. The faculty vigorously pursues joint research projects with industry, academia, and government laboratories. The main facilities of the COP are housed in a state-of-the-art 96,000 sq. ft. building dedicated to optics and photonics research and education. The list of laboratories in this facility is given at the web site.

<u>Fee Schedule:</u>

Facility use is negotiated on a per-proposal basis.

University of Florida

Florida Institute for Sustainable Energy - Energy Tech Incubator

Web Site Link: <u>http://www.energy.ufl.edu/index.php?src=technology_incubator</u>

Contact Information

Dr. Luisa Amelia Dempere, Director

Major Analytical Instrumentation Center (MAIC) & FISE Technology Incubator Associate Engineer, Research Service Centers, College of Engineering, University of Florida *Email: <u>ademp@mse.ufl.edu</u> Phone:* (352) 392-6985 *Fax:* (352) 392-0390

Description

Florida Institute for Sustainable Energy (FISE) at UF brings together the broad research capabilities of UF under one umbrella to develop energy efficient technologies, sustainable practices, policy analyses, and provide energy education to assist the government, utility and energy companies. FISE Energy Technology Incubator is the commercialization arm of the institute. It is established with \$4.5 million Center of Excellence award from the State of Florida. This energy technology incubator is used to transition energy research to commercial products and processes. The FISE Energy Technology Incubator includes a Prototype Development & Demonstration Laboratory and Biofuel Pilot Plant.

Fee Schedule:

Facility use is negotiated on a per-proposal basis.

UF Biofuel Pilot Plant, Gainesville FL

Web Site Link: <u>http://fcrc.ifas.ufl.edu/pilotplant/</u>

Contact Information

Dr. Shelia Gomez Email: <u>spgomez@ufl.edu</u> Phone: (352) 392-0237 Fax: (352)392-5922 Address: Bldg. 981 Museum Road, Gainesville FL, 32611-0700

Description

The Biofuel Pilot Plant serves as a platform to accelerate successful commercialization of bioethanol. The pilot plant is used to develop and improve production processes, test production feasibility from various plant substrates and residues available in Florida, and demonstrate all unit operations needed for commercialization. It is a 4,000 sqft facility with state of the art equipment including biomass processing equipment, biomass reactor, fermenters, centrifuge, distillation column,

testing equipment.

The pilot plant is a testimony of the more than two decades of research efforts done at the Florida Center for Renewable Chemicals and Fuels to convert biomass such as bagasse, forestry and wood wastes, and other organic materials to ethanol. The technology used in the conversion process uses genetically engineered E. coli bacteria that target the sugars in the cellulosic component of the biomass materials. *Fee Schedule:* Facility use is negotiated on a per-proposal basis.

UF Biofuel Pilot Plant, Perry FL (COMING SOON)

Web Site Link: Coming Soon

<u>Contact Information</u> Dr. Shelia Gomez Email: <u>spgomez@ufl.edu</u> Phone: (352) 392-0237 Fax: (352)392-5922

State funded (\$20M) Research/Demonstration pilot plant to provide a platform for research and improvements and for design engineering to construct full scale plants of 20-50 million gallons of ethanol per year is in construction phase in Perry FL. Energy crops, agricultural residues and forestry residues, and municipal green waste could support over 200 such plants in Florida, creating employment, improving the environment, and ensuring that Florida is doing its part to promote energy independence.

<u>Fee Schedule:</u> Facility use is negotiated on a per-proposal basis.

<u>Nanoscience Institute for Medical & Engineering Technologies (NIMET) and Nanoscale Research</u> <u>Facility (NRF)</u>

Web Site Link: <u>http://nimet.ufl.edu/</u> and <u>http://nrf.aux.eng.ufl.edu/</u>

Contact Information

NIMET: David Arnold (<u>darnold@ufl.edu</u>) Phone: (352) 392-4931

NRF: Brent Gila (bgila@ufl.edu) Phone: (352) 273 2245

Address: UF-NIMET 100 Center Drive, Gainesville, FL 32611

Description

Nanoscience Institute for Medical and Engineering Technologies (NIMET) and the Nanoscale Research Facility (NRF) at UF provide support for major research center initiatives in the areas of nano-and-micro-scale science and technology (NMS&T). Facility is open to all faculty, staff, and collaborators. It provides state-of-the-art equipment for research, education, nanofabrication, and prototype development of nano-materials, MEMS and NEMS devices, and sensors in NMS&T.

NIMET was created to focus and coordinate research and educational activities at the University of Florida in the fields of nanoscale science and nanotechnology (NS&T). Research in nanoscience and related fields

at UF has developed in several colleges and now involves the research of over eighty faculty and staff in physics, chemistry, biology, medicine, engineering, and materials science.

The NRF is a two story building with seven functional areas:

• A Class 100-1000 cleanroom facility for nanofabrication and bio processing

• Advanced electron, optical, and surface imaging laboratories

• Core research laboratories for synthesis, processing, characterization, assembly, and testing of nanoscale

materials, devices and sensors

- General laboratory space for interdisciplinary research collaborations
- Offices for faculty, staff and users
- Interactive spaces for conferences, informal gatherings, user administration, and surroundings conducive to multidisciplinary interactions
- Building support and utility handling areas.

The NRF resource and equipment list is given at : <u>https://nrf.aux.eng.ufl.edu/resources/default.asp</u>

Fee Schedule:

Facility use is negotiated on a per-proposal basis.

Wayne K. and Lyla L. Masur HVAC Laboratory

Web Site Link: http://plaza.ufl.edu/sasherif/HVACLaboratory.htm

Contact Information

Email: <u>sasherif@ufl.edu</u> Phone: (352) 392-7821 Fax (352) 392-1071

Dr. S.A. Sherif, Professor of Mechanical and Aerospace Engineering,

Founding Director Wayne K. and Lyla L. Masur HVAC Laboratory, Director Industrial Assessment Center,

Co-Director Southeastern Center for Industrial Energy Intensity Reduction (SECIEIR)

Department of Mechanical and Aerospace Engineering, University of Florida, 232 MAE Bldg. B, P.O. Box 116300, Gainesville, Florida 32611-6300, U.S.A.

http://www.mae.ufl.edu/facultylist/ShowData.php?ID=57

Description

The Wayne K. and Lyla L. Masur HVAC Laboratory was inaugurated in February 1995 in a ceremony attended by dignitaries from the University of Florida and the local, regional, and national American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) community. The Laboratory was founded by Dr. S.A.Sherif, Professor of Mechanical and Aerospace Engineering, employing a significant cash donation from the Masur family. Wayne Masur is a successful alumnus of the Mechanical Engineering Department at UF. The Laboratory serves both an instructional and a research mission. Among its research capabilities is a unique experimental facility designed to study frost and ice formation on industrial freezer coils under ice foggy conditions. The Laboratory also includes an air-conditioning demonstration facility, a cooling tower simulator, an air-water heat pump system, and a chilled-water system with an artificial load simulator. Currently there is an effort to install a system with multi-air handling units and variable flow control capability for air conditioning applications. Most recently, experimental research was completed for the US Air Force to develop deployable heat pump units employing rotary vane expanders. Over 50 different investigations have been conducted in the Laboratory and hundreds of students have taken part in different instructional and research activities since its creation in 1995. The Laboratory is housed in Room 110 of the Mechanical and Aerospace Engineering Building B on Gayle Lemerand Drive. For laboratory tours contact Dr. Sherif at (352) 392-7821.

Fee Schedule:

Negotiated on a case-by-case basis (project based).

Major Analytical Instrumentation Center

Web Site Link: <u>https://maic.aux.eng.ufl.edu/about.asp</u>

Contact Information

Dr. Luisa **Amelia** Dempere, *Director* Major Analytical Instrumentation Center (MAIC) & FISE Technology Incubator Associate Engineer, Research Service Centers, College of Engineering, University of Florida

Email: <u>ademp@mse.ufl.edu</u> Phone: (352) 392-6985 Fax: (352) 392-0390

Description

The Major Analytical Instrumentation Center (MAIC) is a materials characterization and analysis facility established to provide analytical support for Florida's scientific and engineering community in meeting the challenge of technology development. MAIC is a user oriented facility that provides service to the university system and the industrial & commercial community.

The equipment list includes Scanning Electron Microscope, Auger Spectroscopy, Electron Probe Microanalysis, Direct Write (nScrypt), Electron Probe Microanalysis, ESCA/XPS, Focused Ion Beam, Mass Spectrometer, X-Ray Diffraction, Screen Printer, Spin Coater, Surface Metrology, Tape Caster, furnaces, wire bonder, viscometer, and Potentiostat & FRA. The complete list is given at <u>https://maic.aux.eng.ufl.edu/resources/default.asp</u>.

MAIC offers Membership Program that is intended to provide a more complete and efficient service to industrial and commercial users of the facilities at the MAIC. This program allows companies and industry to obtain preferred use-rates, priority in use of MAIC facilities, data analysis and interpretation, priority/lower rates or free registration for MAIC short courses and workshops, instrumentation appointments through the internet, access to remote operation of MAIC electron microscopes, current information regarding MAIC activities, new services, instrumentation and techniques, the MAIC Newsletter, and recognition as a MAIC affiliate in MAIC publications, brochures, and presentations.

<u>Fee Schedule:</u> The facility user rates are posted at <u>https://maic.aux.eng.ufl.edu/exsetup.asp</u>

Particle Engineering Research Center (PERC)

Web Site Link: <u>http://perc.ufl.edu/sc/about.asp</u>

<u>Contact Information</u> Gary Scheiffele at 352-846-1733 Kevin Powers at 352-846-3554 Email: <u>percsc@perc.ufl.edu</u> Reach PERC by filling out the Inquiry Form at: <u>https://perc.ufl.edu/ccb/sc/inquiry.asp?id=new</u>

Description

PERC at UF is an integral part of the Particle Engineering Research Center at the University of Florida. It includes state-of-the-art instrumentation for particle characterization and analysis. The 17,000 square foot space includes six analytical laboratories, two processing labs, and a 5000 square foot testbed with a high bay area, a two-ton crane, a loading dock, compressed air, and other necessities required to conduct pilot scale experiments. The testbed and laboratories house equipment for assisting research groups with routine measurements as well as validation and demonstration of process and product ideas developed by research teams and the PERC's Industrial Partners. The Research & Development Facility creates the centerpiece of a world-class operation in particle science and technology.

Fee Schedule

Inquiry form is requested from each applicant describing the service(s) needed. The fee will be determined based on the service needs.

University of South Florida

USF Thin Film Pilot Line (COMING SOON)

Web Site Link: Not available yet

Contact Information Email: TBD Phone: TBD

Description

Thin Film Pilot Line at the University of South Florida, Tampa, is a \$2M state funded 2500 ft2 facility. It is adjacent to the USF Incubator Building to foster the genesis of university/industry partnerships. The facility will enable the complete fabrication and evaluation of thin film solar modules.

<u>Fee Schedule</u> TBD

USF Nanotechnology Research and Education Center (NREC)

Web Site Link: <u>http://www.nrec.usf.edu/</u>

Director: Ashok Kumar

<u>Contact Information</u> Robert Warner, Assistant Director Email: <u>tufts@usf.edu</u> Phone: 813.974.5274

Description

The Nanotechnology Research and Education Center (NREC) housed in the 15,000 square foot Nanotech I building at the University of South Florida has five laboratories available for user access. A Class 1000, 1800 square foot Cleanroom, Thin Film Lab, Metrology Suite, Electrical Test/Packing Lab, and Wet Chemistry Lab. In addition, there are 4 full-time technical staff and one office staff to run the Nanotech1facility.

Thin Film Laboratory

The laboratory contains an aluminum thermal evaporator, a four pocket Ebeam evaporator, a rapid thermal anneal tool, and a multi-chambered sputter tool. Various metals are available in either pellet or sputter target form.

Metrology Suite

This suite of rooms contains a FEI TF20 Transmission Electron Microscope with STEM, EDS and Gatan digital imaging options, a Digital Instruments Atomic Force Microscope, a Panalytical XPert Pro Materials Research Diffractometer, a Field Emission Hitachi S800 Scanning Electron Microscope with EDS capabilities, a Hitachi SU-70 Ultra High Resolution Scanning Electron Microscope Schottky FE-SEM with nanolithography capabilities, EDS and Gas Injection, and a FEI Quanta 3D Dual Beam Focused Ion Beam.

Various optical microscopes and material preparation table top tools are also available to support the sample preparation aspect of the major equipment.

Electrical Test/Package Laboratory

This laboratory contains Models 6200/6000 Micromanipulator probe stations, a HP 4280A 1 MHz C Meter & C-V Plotter, a HP4145B Semiconductor Parameter Analyzer, a HP 4284A Precision LCR Meter, a HP 4294A Precision Impedance Analyzer a Dektak Profilometer, and a K&S 4123 Wire Bond station.

Wet Chemistry Laboratory

This laboratory contains a solvent and an acid/base wet bench to support chemical processes such as nickel and gold electroplating. The lab also contains a MA 1006 Micro Automation wafer dicing saw, a tape mounter, a Buehler saw, wire saw, and polisher for material preparations.

Device Fabrication Laboratory/Cleanroom

This laboratory contains equipment to support optical contact lithography, wet chemical cleaning/etching, film thickness/profile measurement, furnace oxide growth, doping, contact anneals, low pressure chemical vapor deposition, plasma dry etching, deep reactive ion etching, plasma enhanced chemical vapor deposition and other more specific research techniques and processes. Photomask fabrication is also available for most designs with features larger than 2 microns.

Cleanroom Process/Equipment Capability Detail

- Three Wet benches Chemically clean samples and substrates; chemically etch films and substrates, general chemical processes. Services: Exhausted bench with deionized water guns and dump rinsers, nitrogen blow guns, process timers, and plenum flush.
- Develop & Spinner Hoods Develop photoresists, photoresist stripping, general solvent cleaning. Services: Deionized water gun and dump rinser, nitrogen blow guns, and process timers.
- Soft/Hard bake ovens and hot plates
- Karl Suss Masker Aligner Align mask sets for patterning waters. Capable of handling 2, 3, and 4" wafers. Supports down to 1 micron technology.
- Quintel Mask Aligner
- Two Photoresist Spinners Laurel Technologies Spinner capable of spinning fragment samples up to 8" wafers. Integrated Technologies Spinner Capable of spinning fragment samples up to 6" wafers. For photoresists, spin on dopants, spin on glasses and polymers.
- Mititoyo Ultraplan FS-110 microscope Long working distance microscope with video still picture capture and onscreen critical dimension measurement capability. Contains bright and dark field, polarized light, Nomarski, and reflected and transmitted illumination capabilities together with extralong working distance objectives and fraction of a micron resolution.
- Rudolph Ellipsometer Capable of measuring film thickness and index of refraction on many different types of films.
- Nanospec 210 film thickness tool for patterned structures.
- Veeco Dektak 150 State of the art profilometer with film stress option.
- Sopra Spectroscopic Ellipsometer
- Veeco Wyco D9100 Optical Profilometer
- Alphastep Profilometer Capable of measuring film or substrate surface features with nanometer resolution.
- BTI Furnaces (Two banks, 8 Tubes) Four inch wafer capable tubes. Each tube has three heating zones. Computer controlled recipe storage and process controller. Spin on and solid source dopants n and p types, contact anneal, dry and pyrogenic oxidations. LPCVD undoped polysilicon films.

- Plasma Therm 700 PECVD and Plasma Etcher Plasma etcher used for ashing, nitride etching, SiC etching. PECVD α -Silicon, SiO₂, and Si_XN_Y films.
- Four point probe station for measurement of sheet resistivity.
- AMS 100 Deep Reactive Ion Etcher Capable of high aspect ratio etching of glass, quartz, silicon dioxide, silicon and silicon carbide films and substrates.
- GCA 3600F Pattern Generator capable of producing 5x5 inch chrome on glass photo masks or reticules
- GCA 3696 Photorepeater
- Denton Gold & Chrome thermal evaporator

<u>Fee Schedule</u>

Florida Institute of Technology

Oak Ridge Associated Universities (ORAU)

Web Site Link: <u>http://www.orau.org/</u>

Contact Information

T. Dwayne McCay, Florida Tech Executive Vice President and Chief Operating Officer, ORAU Councilor at (321) 674-8889

or Monnie E. Champion, ORAU Corporate Secretary, at (865) 576-3306 or (865) 576-3306 or online at <u>www.orau.org</u>.

Description

Since 1989, students and faculty of Florida Tech have benefited from its membership in Oak Ridge Associated Universities (ORAU). ORAU is a consortium of 98 colleges and universities, and a contractor for the U.S. Department of Energy (DOE) located in Oak Ridge, Tennessee. ORAU works with its member institutions to help their students and faculty gain access to federal research facilities throughout the country; to keep its members informed about opportunities for fellowship, scholarship and research appointments; and to organize research alliances among its members. Through the Oak Ridge Institute for Science and Education (ORISE), the DOE facility that ORAU operates, undergraduates, graduates and postgraduates, as well as faculty enjoy access to a multitude of opportunities for study and research. Students can participate in programs covering a wide variety of disciplines including business, earth sciences, epidemiology, engineering, physics, geological sciences, pharmacology, ocean sciences, biomedical sciences, nuclear chemistry and mathematics.

Appointment and program length range from one month to four years. A comprehensive listing of these programs and other opportunities, their disciplines and details on locations and benefits, can be found in the ORISE Catalog of Education and Training Programs, which is available at <u>www.orau.gov/orise/educ.htm</u> or by calling either of the contacts below. ORAU's Office of Partnership Development seeks opportunities for partnerships and alliances among ORAU's members, private industry and major federal facilities. Activities include faculty development programs such as the Ralph E. Powe Junior Faculty Enhancement Awards, the Visiting Industrial Scholars Program, consortium research funding initiatives, faculty research and support programs and services to chief research officers.

Fee Schedule

Facility use is negotiated on a per-proposal basis.

Institute for Materials Science and Nanotechnology (IMSN)

Director: Gordon L. Nelson, Ph.D., Vice President for Academic Affairs and Professor, Chemistry, Interim Director.

<u>Contact Information</u> Email: <u>nelson@fit.edu</u>

Phone: (321)674-8480

Description

The IMSN mission is to enhance and expand materials research and outreach at Florida Tech and advance nanotechnology research and outreach by promoting joint multi-investigator research, encouraging interdisciplinary and trans-disciplinary research, coordinating shared faculty infrastructure, recruiting scholars and students, coordinating presentation of materials- and nanotechnology related activities to external governmental and non-governmental agencies, foundations and industry, and promoting collegiality and cohesiveness within the university in the area of materials and nanotechnology. The 21-institute faculty come from diverse engineering and science disciplines. Current research funding of participating faculty is approximately \$4 million, including research, instrumentation and participation in multi-investigator projects.

Fee Schedule

Facility use is negotiated on a per-proposal basis.

Institute for Energy Systems (IES)

Director: Y.I. Sharaf-Eldeen, Ph.D., P.E., Associate Professor, Mechanical and Aerospace Engineering, and Stephane Bucaille, Ph.D., Assistant Professor, Electrical Engineering, Co-Directors.

<u>Contact Information</u> Email: <u>eldeen@fit.edu</u> or <u>sbucaille@fit.edu</u>

Phone: (321)674-8124 or (321)674-8425

Description

The mission of the IES is to provide an intellectually stimulating environment for faculty and students to conduct funded research in areas of national need. National energy policy identifies these needs to be: (1) increasing domestic energy supplies; (2) increasing America's use of renewable and alternative energy; (3) increasing energy conservation and efficiency; (4) developing a comprehensive delivery system; (5) enhancing national energy security and international relationships; and (6) sustaining the nation's health and environment.

Fee Schedule

Facility use is negotiated on a per-proposal basis.

Harris Institute for Assured Information (HIAI)

Director: Richard A. Ford, Ph.D., Harris Professor for Computer Science in Assured Information, Director.

<u>Contact Information</u> Email: rford@cs.fit.edu

Phone: (321)674-8590

Description

The mission of the Harris Institute for Assured Information is to promote interdisciplinary approaches to computer security and trustworthy computing through education, research and outreach by providing a single point of contact for students, faculty, funding agencies and businesses, and by crossing traditional academic disciplines to promote innovation. Information assurance is the discipline dedicated to providing users with trustworthy data. As such, the institute focuses on new technologies for protecting people and organizations from vulnerabilities that can lead to theft of information, malicious code infection or data destruction.

Fee Schedule

Institute for Research on Global Climate Change

Director: Robert Van Woesik, Ph.D., Professor, Biological Sciences

<u>Contact Information</u> Email: <u>rvw@fit.edu</u>

Phone: (321)674-7475

Description

Over the next century, the Earth's average surface temperature is predicted to rise above temperatures that have not been experienced for over 400,000 years. Such a change in climate will consequently increase the risk of drought, erratic weather, sea-level rise, ocean warming and wildlife diseases. The mission of the institute is to: (1) foster climate-change research that will lead to improved decision-making, from local to international levels; (2) provide world-class research opportunities for undergraduate and graduate researchers; and (3) promote interdisciplinary collaborations leading to new understandings of climate change and adaptation. Since the end of 2009 when the institute was initiated, researchers have published over 60 scholarly articles on climate change in international journals.

Fee Schedule

Facility use is negotiated on a per-proposal basis.

Center for Remote Sensing (CRS)

Director: Charles R. Bostater Jr., Ph.D., Associate Professor, Environmental Sciences and Physical Oceanography

<u>Contact Information</u> Email: <u>bostater@fit.edu</u>

Phone: (321)674-7113 or (321)674-7278

Description

The center's purpose is to encourage excellence in the development and application of remote sensing science and technology. It is organized as a collaborative center among and between faculty within the College of Engineering, College of Science and College of Aeronautics. Under the authority of the Space Grant Act of 1988, Florida Tech is a member of the Southeastern Space Consortium and the Florida Space Grant Colleges Consortium. The center has consulted and provided services to defense contractors, NASA centers and contractors, the Department of Energy and its subcontractors, state of Florida water management agencies, the Department of State and U.S. Department of Education, and is affiliated with foreign institutions and organizations. Facilities for remote sensing teaching and research include the ERDAS Image Analysis System, Evans Library, the Geographical Information Systems Laboratory, the Marine and Environmental Optics Laboratory and the Synoptic Meteorological Laboratory. Various laboratories and facilities in academic and research computing; computer science; aerospace, computer, electrical and mechanical engineering; physics and space sciences; and space systems are also available. Field studies can be conducted through the College of Aeronautics' fleet of aircraft. The university operates several small boats and charters a well-equipped vessel for offshore, estuarine and river work. Center faculty offer a wide variety of courses at the graduate and undergraduate level, including environmental satellite systems and data, hydroacoustics, digital image processing, and environmental optics for remote sensing.

Fee Schedule

National Center for Hydrogen Research (NCHR)

Web Site Link: <u>http://research.fit.edu/nhc/</u>

Director: Mary H. McCay, Ph.D., Research Professor, Mechanical and Aerospace Engineering

<u>Contact Information</u> Email: <u>mmccay@fit.edu</u> Phone: 321- 674-8803

Description

The NCHR was established with funding from NASA to perform research and development concerning the application of hydrogen as a fuel for airborne platforms. It is currently pursuing the development of an interdisciplinary hydrogen and fuel cell technology academic program under the sponsorship of Department of Energy (DOE). The objectives of this program are to develop undergraduate modules, enquiry-based laboratory experiments and a graduate area of specialization academic program that will enable the growth of research and development in the arena of hydrogen and fuel cell technology. Faculty associated with the center are currently conducting research in computational modeling of fuel cells, fiber-optic sensors suitable for safety applications and systems monitoring, hydrogen storage mediums, the interaction of hydrogen with materials and hydrogen purification techniques.

Fee Schedule

Facility use is negotiated on a per-proposal basis.

Collaborative International Research Centre for Universal Access (CIRCUA)

Web Site Link: <u>http://circua.fit.edu/</u>

Director: Gisela Susanne Bahr, Ph.D., Associate Professor, Industrial/ Organizational Psychology, Executive Head

<u>Contact Information</u> Email: <u>gbahr@fit.edu</u>

Phone: (321)674-7613

Description

The Collaborative International Research Centre for Universal Access (CIRCUA) is an international research center with worldwide membership that promotes universal access and e-inclusion. CIRCUA's motto calls for removing barriers to modern technology in the information society. CIRCUA's objectives are: (1) advancing research and development for an inclusive information society; (2) leading the systematic growth of interaction science by drawing on expertise in cognitive and computer sciences; (3) creating global partnerships that result in international collaborations and products; and (4) networking and fusing multidisciplinary expertise globally. CIRCUA's international center head is Florida Tech's Dr. Bahr. CIRCUA's European center head is Dr. Ray Adams, University of Middlesex, London, and Churchill College, Cambridge, both in England.

<u>Fee Schedule</u> Facility use is negotiated on a per-proposal basis.

Center for High Resolution Microscopy and Imaging (CHRMI)

Director: Michael Grace, Ph.D., Associate Dean, College of Science and Associate Professor, Biological Sciences, Director.

<u>Contact Information</u> Email: mgrace@fit.edu

Phone: (321)674-8194

Description

The Center for High Resolution Microscopy and Imaging is a multidisciplinary laboratory providing stateof-the art light and fluorescence microscopy, transmission electron microscopy, scanning electron microscopy, scanning probe microscopy and x-ray microanalysis of natural and artificial materials. The CHRMI contains necessary equipment and expertise to prepare almost any kind of sample for microscopic evaluation, to image sample surfaces and cross-sections at very high resolutions and to analyze elemental compositions of materials. Support staff maintains instrumentation and trains users in sample preparation and analyses of microstructure and microchemistry. Image collection is both film-based and digital. Support platforms provide detailed image analysis capabilities.

Fee Schedule

Facility use is negotiated on a per-proposal basis.

Center for Ferrate Excellence (COFE)

Web Site Link: <u>http://research.fit.edu/cofe/</u>

Director: Virender K. Sharma, Ph.D., Professor, Chemistry

<u>Contact Information</u> Email: vsharma@fit.edu

Phone: (321)674-7310

Description

In recent years, the higher oxidation states of iron (ferrates) have become of interest because they can safely and efficiently clean polluted water without harmful byproducts. The ferrate compound may be used as an oxidant, disinfectant, coagulant and for industrial green purposes. Ferrate has thus become advantageous over other commonly used chemicals in the wastewater industry. Applications of ferrate include treatment of common pollutants and emerging contaminants such as arsenic, estrogens and pharmaceuticals. The ferrate compound has also attracted interest for applications in green chemistry because the byproducts of its use, iron oxides, are environmentally friendly. Recently, the technology developed at Florida Tech has made a breakthrough in synthesizing liquid ferrate, which, unlike competing products, is stable for at least two weeks. This liquid product will open new opportunities for novel applications of ferrate. The intellectual property on the ferrate technology is being developed for licensing to bring it to the marketplace. This center offers technology, production and application as well as on-site engineering, testing and analysis.

Fee Schedule

Center for Corrosion and Biofouling Control (CCBC)

Web Site Link: <u>http://research.fit.edu/ccbc/</u>

Director: Geoffrey W.J. Swain, Ph.D., Professor, Oceanography and Ocean Engineering

<u>Contact Information</u> Email: <u>swain@fit.edu</u>

*Phone: (321)*674-7129

Description

The mission of the center is to understand the processes of biofouling and corrosion, and to develop and apply innovative solutions for control and prevention. Its objectives are to advance the state-of-the-art in corrosion and biofouling control; to establish mutually beneficial collaborative relationships with local, national and international university, government and industrial partners; and to provide graduate and undergraduate students a world-class research and educational experience that prepares them for both academic and industrial professional opportunities. Current research activities include testing and evaluation of antifouling systems; investigation of hydrodynamic performance of ship hull coatings; the development of autonomous underwater hull cleaning systems; investigating the mechanisms of adhesion and release of fouling to novel biocide-free coating systems; and monitoring the performance of antifouling coatings through dry dock inspections.

Fee Schedule

Facility use is negotiated on a per-proposal basis.

Federal Aviation Administration Center of Excellence for Commercial Space Transportation

Director: Samuel T. Durrance, Ph.D. Professor, Physics and Space Sciences, and Daniel R. Kirk, Ph.D., Associate Professor, Mechanical and Aerospace Engineering, Co-Directors

<u>Contact Information</u> Email: <u>sdurranc@fit.edu</u>

Phone: (321)674-7313

Description

The center is a partnership of academia, government and private industry addressing the current and future challenges for commercial space transportation. The center encompasses four primary research areas: (1) space traffic management and operations; (2) space transportation operations, technologies and payloads; (3) human spaceflight; and (4) space transportation industry promotion.

<u>Fee Schedule</u>

Facility use is negotiated on a per-proposal basis.

Center for Entrepreneurship and New Business Development (CENBD)

Director: S. Ann Becker, Ph.D., Dean, Nathan M. Bisk College of Business

<u>Contact Information</u> Email: <u>abecker@fit.edu</u>

Phone: (321)674-7327

Description

The Center for Entrepreneurship and New Business Development integrates entrepreneurial education, training and research in pursuit of enterprise creation, sustainability and growth. The center fosters partnerships among students, faculty, community members and entrepreneurs. These partnerships support

an educational environment bridging theory and practice in pursuit of early-stage innovation, business leadership and new business ventures. The center encompasses the Women's Business Center (WBC) and the Entrepreneurial Training Services (ETS) program. The WBC is funded by a cooperative agreement with the U.S. Small Business Administration, offering technical assistance for nascent entrepreneurs and small businesses. The ETS program offers entrepreneurs intensive training on business development, supported by business faculty, community leaders and business area experts.

Fee Schedule

Facility use is negotiated on a per-proposal basis.

Wireless Center of Excellence (WICE)

Web Site Link: <u>http://research.fit.edu/wice/</u>

Director: Ivica Kostanic, Ph.D., Associate Professor, Electrical and Computer Engineering

<u>Contact Information</u> Email: kostanic@fit.edu

Phone: (321)674-7189

Description

WICE is devoted to creating a new generation of wireless engineering professionals through education and research. Driven by its academic program, WICE considers wireless to be any system or device that relies on electromagnetic-wave propagation to perform one or more of its functions. This context includes such diverse applications as radar, global positioning, location and sensing, as well as the broader class of communications systems such as satellites, point-to-point/multipoint, WLAN and wireless WAN. In partnership with industry, WICE offers the opportunity for faculty, and undergraduate and graduate students to engage in research and to study wireless concepts in a variety of courses. Research areas include propagation modeling, wireless systems engineering, personal communications systems, wireless sensors and multimedia communications, while also supporting simulation, fabrication and measurement of wireless concepts and other systems and components. Laboratory test equipment includes Grayson's Spectrum Tracker, and spectrum and vector network analyzers, oscilloscopes, microwave amplifiers, oscillators and mixers, signal generators and associated active and passive RF devices. The laboratory performs experimental investigation using the anechoic chamber and screen room facilities. WICE is supported by significant laboratory facilities as described under "Electrical Engineering" in the Degree Programs section.

Fee Schedule

Facility use is negotiated on a per-proposal basis.

Florida Center for Automotive Research (FCAR)

Director: Pei-feng Hsu, Ph.D. Professor and Head, Mechanical and Aerospace Engineering, Interim Director

<u>Contact Information</u> Email: <u>phsu@fit.edu</u>

*Phone: (321)*674-8092

Description

The mission of the Florida Center for Automotive Research is to develop an automotive engineering program with both research and educational components in order to leverage its engineering research capability in the development of highly fuel-efficient hybrid or conventional vehicles. The center will provide the academic research capability to support hybrid vehicle production. The center will also provide

solutions to challenging technical problems encountered in design and manufacturing, enhance Florida's reputation for automotive research and attract automotive supplier/original equipment manufacturer (OEM) operations to Florida.

<u>Fee Schedule</u>

Facility use is negotiated on a per-proposal basis.

College of Engineering Center for Space Commercialization

Director: Daniel R. Kirk, Ph.D., Associate Professor, Mechanical and Aerospace Engineering, Interim Director

<u>Contact Information</u> Email: <u>dkirk@fit.edu</u>

*Phone: (321)*674-7622

Description

The mission of the College of Engineering Center for Space Commercialization is to identify, promote and support the use of space to provide goods or services of commercial value, and to support U.S. aerospace industries and NASA needs toward a profitable commercialization of space. The center seeks to foster multidisciplinary collaboration among researchers from highly diversified scientific, engineering and business communities including universities, businesses and government entities.

<u>Fee Schedule</u>

Facility use is negotiated on a per-proposal basis.

Vero Beach Marine Laboratory (VBML)

Web Site Link: <u>http://research.fit.edu/vbml/</u>

Director: Junda Lin, Ph.D., Professor, Biological Sciences

Contact Information Email: jlin@fit.edu

Phone: (321)674-7587

Description

VBML is located on four acres of oceanfront property in nearby Vero Beach. This facility serves as a field station for the university in support of research and teaching in the marine sciences. The beachfront location of VBML provides ready access to field study sites for work on the biology of coastal organisms and for studies of physical and geological processes of the coastal zone. Major research efforts at the laboratory are related to mariculture and marine biology/ecology. A two-story building, equipped with seawater tables and a flow-through system, supports research on mariculture and ecology of marine organisms. Several greenhouses and large tank systems are available for studying aquaculture, behavior and ecology of marine animals. Classrooms, offices and dry laboratory facilities are provided in the main laboratory building.

<u>Fee Schedule</u>

Microelectronics Laboratory

Director: Susan K. Earles, Associate Professor, Electrical and Computer Engineering

<u>Contact Information</u> Email: <u>earles@fit.edu</u>

Phone: (321)394-2171

Description

This microelectronics facility is designed to be a teaching laboratory as well as an advanced research laboratory. A microelectronics fabrication course is taught to graduate and undergraduate students. In this course, students complete, fabricate and test a variety of electronic devices such as photovoltaic devices and hydrogen sensors. Research conducted in the facility includes polymer-based and silicon-based electronic and optoelectronic devices. The 3,800-sq.-ft. facility has all support services needed for modern semiconductor research including a 3,000-sq.-ft. clean room and areas dedicated to circuit testing and equipment maintenance. Equipment in the laboratory includes ultraviolet photolithography, diffusion furnaces, a thin-film evaporator, wet chemistry benches, and measurement and inspection equipment. The advanced research laboratory presently features a scanning probe microscope, plasma enhanced deposition and lasers for teaching and research.

Fee Schedule

Facility use is negotiated on a per-proposal basis.

Laser, Optics and Instrumentation Laboratory (LOIL)

Web Site Link: <u>http://research.fit.edu/loil/</u>

Director: Kunal Mitra, Ph.D., Professor, Mechanical Engineering and Chelakara Subramanian, Ph.D., P.Eng (UK), Professor, Aerospace Engineering, Co-Directors.

<u>Contact Information</u> Email: <u>kmitra@fit.edu</u>

Phone: (321)674-7131

Description

LOIL exploits current technologies in continuous wave and short-pulse lasers and optics to develop new techniques for measuring and characterizing material properties. Faculty and graduate students are involved in analyzing the interaction of these lasers with different materials for various applications. Biomedical applications focus on detecting and irradiating cancer/tumors and in homogeneities in tissues. Material characterization/processing applications involve detection of defects in materials such as debonding of thermal protection tile systems and thermal response of materials subjected to high-energy radiation. Remote sensing applications focus on lightning detection in cloud media and landmines in shallow waters. The challenge of integrating laser sources, system optics, instrumentation, measurement schemes and data acquisition provides students with new learning experiences in these areas. Major equipment currently in use includes mode-locked short-pulse laser, Q-switched pulsed laser, short pulse diode laser, high-power continuous wave lasers, ultrafast photodetectors, sampling head oscilloscope, streak camera, miscellaneous optics and optical accessories, thermal camera and an image processing system.

Fee Schedule

Wind and Hurricane Impacts Research Laboratory (WHIRL)

Web Site Link: <u>http://research.fit.edu/whirl/</u>

Director: Jean-Paul Pinelli, Ph.D., P.E., Professor, Civil Engineering

Contact Information

Email: <u>pinelli@fit.edu</u>

Phone: (321)674-8085

Description

WHIRL is dedicated to the study of the effects and impacts of windstorms including hurricanes, tornadoes and thunderstorms, and other related meteorological hazards (e.g., flooding and tidal surges) on the natural environment and manmade structures. The laboratory involves a multidisciplinary team of engineers, scientists and business experts. It takes advantage of a geographic location in the heart of Florida's Space Coast to serve the needs of industry, government and the public in wind hazard mitigation. The laboratory's activities include research on mitigation of losses of life, property and the environment; education of the public through dissemination of information; and the development of a multidisciplinary program of study focused on wind engineering and wind-related socioeconomic studies and analyses. Research topics in the laboratory include action of strong winds and storm surges on structures; evaluation of codes, standards and retrofitting techniques for buildings and infrastructure systems; risk assessment for existing structures, coastal erosion, sediment transport and environmental damage due to storm surges and floods; development of remote sensing tools for assessing and monitoring hurricane damage, wind speed and flood levels; fundamental wind and meteorological research; wind tunnel modeling and testing; and statistical studies, analysis of economic impacts and development of potential damage maps for hurricane hazards in Florida.

Fee Schedule

Facility use is negotiated on a per-proposal basis.

Dynamic Systems and Controls Laboratory (DSCL)

Web Site Link: <u>http://coe.fit.edu/mae/labs/sys.php</u>

Director: Hector Gutierrez, Ph.D., P.E., Associate Professor, Mechanical Engineering and Y.I. Sharaf-Eldeen, Ph.D., P.E., Associate Professor, Mechanical Engineering, Co-Directors

<u>Contact Information</u> Email: hgutier@fit.edu

Phone: (321)674-7321

Description

DSCL supports a variety of research activities in dynamic systems for mechanical and aerospace applications: (1) real-time monitoring and control of the flexible dynamics in launch vehicles including design, characterization and system integration of distributed actuators such as cold gas thrusters; (2) use of Fiber Bragg grating arrays to monitor and control in real-time multi-modal vibrations in aerospace structures; (3) in electrical machinery, the design, analysis, characterization and testing of novel machine topologies such as dual armature generators; (4) characterization of the liquid slosh dynamics in upper stage propellant tanks; and (5) magnetic suspension technology, computer-based instrumentation and mechatronics. Current and past research activities include: (1) realtime control of structural vibrations based on magneto-rheological (MR) dampers; (2) magnetic suspension systems for high-precision positioning applications; (3) characterization of surface tension and contact angle in novel propellants; (4) rotating machinery monitoring and fault diagnosis, online vibration systems for power generation, transmission systems and components in rotating machinery.

<u>Fee Schedule</u> Facility use is negotiated on a per-proposal basis.

Robotics and Spatial Systems Laboratory (RASSL)

Web Site Link: <u>http://research.fit.edu/rassl/</u>

Director: Pierre M. Larochelle, Ph.D., Assistant Dean, College of Engineering and Professor, Mechanical Engineering

<u>Contact Information</u> Email: <u>pierrel@fit.edu</u>

Phone: (321)674-7274

Description

RASSL is dedicated to the development of robotic mechanical systems that generate spatial (i.e., 3-dimensional) motion and force transmission. RASSL seeks to advance the design methodologies for these challenging systems as well as techniques for their use in industrial and consumer applications. Equipment includes a Motoman SV3 XRC robot, an Adept/Mobile Robotics PowerBOT and several systems developed by RASSL.

<u>Fee Schedule</u> Facility use is negotiated on a per-proposal basis.

Ralph S. Evinrude Marine Operations Center

Director: Captain Timothy Fletcher, Manager

<u>Contact Information</u> Email: <u>tfletcher@fit.edu</u>

Phone: (321)727-7930

Description

The center houses small outboard-powered craft and medium-sized workboats. These vessels are available to graduate students and faculty for teaching and research use in the tributaries and the Indian River Lagoon (IRL). The facility has a variety of other resources available and is located on Crane Creek in Melbourne, approx. 1.5 mile from the main campus. The IRL is a national estuary and is the most biodiverse estuary system in North America. The Florida Tech national champion crew team, champion concrete canoe team, Sailing Club and scientific diving program safety office are also housed at the center.

<u>Fee Schedule</u> Facility use is negotiated on a per-proposal basis.