Growth of Microalgae for Biofuel Production on High Strength Wastewater

Sarina J. Ergas & Trina Halfhide

Xin Yuan

Ashish K. Sahu

Florida Energy Systems Consortium Summit Orlando Florida September 28, 2010

Concerns about climate change

2090's medium Emission Scenario: IPCC, 2007

- Methods proposed for reducing GHGs:
 - Reforestation
 - Increased use of renewable and nuclear energy,
 - Carbon Capture & Storage
 - Increased use of biofuels
 - Corn, sorghum, sugar cane, sugar beets
 - Switch grass, woody biomass
 - Soy, sunflower, palm oil
 - Algae oil, biogas, other fuels.

Life cycle costs of algal biofuels

- Clarens et al., 2010:
 - Conventional crops lower environmental impacts than algae in energy use, GHGs, & water.
 - Algae performed favorably with regard to land use and eutrophication.
 - Use of flue gas and wastewater can offset environmental burdens.

Land, energy, & water impacts for algae production in different locations. Source: *Environmental Science & Technology*

Algae-Based Production of Biofuels, Coproducts, & Services w/ Impaired Waters

Algal biofuel integration with WWTP anaerobic digestion infrastructure:

Centrate as an algal growth substrate:

Opportunities:

- Centrate carries 15-20%
 N load in WWTP.
- Centrate recirculation to headworks can cause upsets in BNR processes.

Challenges:

- High NH₄⁺ may inhibit algal growth.
- Little research on algal growth on centrate.

Image from Massachusetts Water Resources Authority

Research approach:

- Algal species Spirulina platensis and Chlorella sp.
- Growth media sludge centrate and mixture of centrate with nitrified effluent.
- Evaluation of algal growth and nutrient uptake rates.
- Harvested algae co-digested with waste activated sludge at varying algae/WAS ratios
- Evaluation of anaerobic digester performance.
- Preliminary investigations of algal harvesting methods.

Spirulina platensis

- Cyanobacteria (blue green algae)
- 55% protein, 11% carbohydrates, 8% lipid
- Obtained from U Texas Austin Algal Culture Collection
- Good resistance to free ammonia.

 Multicellular structure – gravity settling works well for harvesting.

Chlorella sp.

- Green (heterotrophic) algae
- 50% protein, 15% carbohydrates, 20% lipid.
- Harvested from Amherst MA WWTP clarifiers.

Grows well on municipal, industrial and ag WW.

Algal growth and nutrient uptake:

Parameter (mg L ⁻¹)	Centrate	Centrate/Nite effluent
COD	60-150	50-80
TN	200-400	100-120
NO ₃ N	3-30	20-30
NH ₃ -N	180-400	80-100
TP	60-120	30-60

- •Sparged with 2% CO₂ in air
- •Light: 10 klux (400 µmol m⁻² s⁻¹), continuous & 12 hr light/12 hr dark
- •Temperature 20°C.

Anaerobic co-digestion:

- *Chlorella sp.* grown on defined media.
- Washed algae harvested by centrifugation.
- WAS from conventional A-S system.
- Mesophilic temperature: 37 °C
- SRT: 28 d.
- Algae/WAS ratios:
 - 100, 15, 5, 0%.

Algae harvesting:

- Chlorella sp.
- Alum and Ferric chloride
- 1 40 mg/L with pH adjustment to optimal range
- Rapid mix: 100 rpm 1-2 min
- Flocculation: 25 rpm 20 min
- Sedimentation: 30 minutes
- Turbidity, UV254 absorbance, specific resistance to filtration (SRF) measurements.

Image from Wageningen University

Algae growth:

- *Chlorella sp.* grew well on both centrate and mixture (Figs).
- S. platensis inhibited by centrate but grew well in mixture.
- Light availability limited growth

 especially for *Chlorella* on
 centrate.
- > 90% TN removal, preferential
 NH₄⁺ uptake over NO₃⁻
- Some NH₃ loss by volatilization.
- > 20% TP removal.
- Increases in dissolved PO₄³⁻ and COD observed.

Algal growth summary:

Species	Chlorella sp.			S. platensis		
Medium	Cen	trate	Mixture		Mixture*	
Light/dark	24/o	12/12	24/0	12/12	2 4/0	12/12
Max. Productivity (g/m²/d)	15.6	6.8	5.5	4.8	2.8	2.4
Max. TN Uptake Rate (g/m³/d)	49.3	36.5	39.5	35.4	39.1	34.6
Max. TP Uptake Rate (g/m³/d)	7.4	6.5	6.4	5.6	6.9	5.5

^{*}no growth observed for *S. platensis* on centrate.

Comparison with other studies:

Species	Medium	Light intensity (µmol m ⁻² s ⁻¹)	Mixing/ aeration	Temp. °C	Specific growth rate d ⁻¹	Ref.
Chlorella zofingiensis	Anaerobic effluent	NA continuous	Stir bar	23-28	0.49	Córdoba et al., 2008
Chlorella vulgaris	BG11	50 12/12	6% CO ₂ bubbling	30	0.22	Chinnasamy et al., 2009
Chlorella vulgaris	Textile wastewater	135-1,139 natural light	Paddle wheel	24-32	0.05-0.39	Lim et al., 2010
Chlorella sp.	Centrate	370-430 12/12 & continuous	2% CO2 bubbling	20	0.19-0.32	This study

Anaerobic digestion Chlorella:

		Capillary Suction Time (s)		
Algae fraction (%)	VSR (%)	Before digestion	After digestion	
0	41.1	40	471	
5	44.8	29	589	
15	45.3	26	862	
100	68.1	9.3	390	

- Co-digestion of Chlorella with WAS improved degradability but had a negative effect on dewaterability.
- No biogas measurements yet.

Harvesting results:

- FeCl: Lowest turbidity (1.59 NTU) & UV abs (0.057 cm⁻¹) at 25 mg/L Fe, pH 5.3.
- Alum: Lowest turbidity (1.99 NTU) & UV absorbance (0.056 cm⁻¹) at 50 mg/L Al, pH 6.9.
- Lower SRF values with FeCl.

Specific resistance to filtration:

Conclusions:

- High growth, N & P uptake rates with *Chlorella* on centrate.
- Insignificant growth observed with *S. platensis* on 100% centrate.
- Both species grew well on the centrate/nitrified effluent mixture.
- Both species depleted N and P from the medium and preferentially utilized ammonia over nitrate.
- COD concentrations increased slightly, even with heterotrophic *Chlorella* indicating low bioavailability of organics in centrate.
- Algae co-digestion with WAS improved VSR and may possibly result in more biogas generation.
- Co-digestion of *S. platensis* with WAS improved biosolids dewaterability; however, *Chlorella* addition had a negative impact on dewaterability.

Next steps:

- Algal growth experiments: Ergas/Wolan USF
 - Continuous flow reactor studies
 - CO₂ uptake rates
 - Lipid production
 - Aquaculture wastewaters
- Algae co-digestion studies: Chul Park UMass Amherst
 - Effect of substrate and growth stage on digestibility, biogas production and biosolids dewaterability
- Harvesting: Park/Ergas
 - Use of polymers
 - Effects of coagulants on anaerobic digestion
- Life cycle analysis: Qiong Zhang USF

Acknowledgements:

- Aquateam-Norwegian Water Technology Center.
- Research Council of Norway
- Biowater Technology AS, Norway
- Florida Energy Systems Consortium (FESC)
- Chul Park, Meng Wang, Erik Rosenfeldt, Safina Singh, Misha Herscu, Phillip Teague

Image from Pure Energy Fuels Ltd.

Thank you