A Buoy Array for Ocean Wave Power Generation

September 28, 2010 University of Central Florida College of Engineering and Computer Science

Principle Investigators

Dr. Zhihua Qu

 Professor / Interim Chair – Electrical and Computer Engineering Division

• Dr. Kuo-Chi Lin

 Professor – Dept. of Mechanical and Aerospace Engineering

Researchers

- Shiyuan Jin
 - Ph.D. student Computer Engineering
- Carlos Velez
 - Master's student Aerospace Engineering
- Steven Helkin
 - Master's student Mechanical Engineering
- Karan Kutty
 - Master's student Electrical Engineering

Sponsors

 Florida Energy Systems Consortium – \$150,000 two-year project, completed

Harris Corporation

 \$10,000 one-year continuation project

Wave Energy Very few designs in use today

- Water has

 ~1000 times
 greater power
 density as air
- A 1-meter wave: 9.5 kW of power (per meter of shoreline)

HARRIS

Conceptual Design

Wave point
 absorber

Rotary generator

• Flywheel energy storage

Modeling & Simulation

- Calculates
 - Shaft RPM
 - Power
 - Cable Tension
- Adjustable inputs allows for system optimization

HARRIS

Hydrodynamic Analysis

 Buoyancy force, and resulting motion

• Effect of buoy size and weight on buoy's response to waves.

 Data was used to help validate the hydrodynamic simulation

First Generation Prototype

Proof of concept Average Power: 37 Watts

RRIS

Second Generation Prototype Larger flywheel & improved generator 4:1 RPM Avg. Power: 206 Watts

Experimental Platform

Hydraudyne 6 DoF Platform
Sinusoidal input

Amplitude: 10.0
cm

Frequency: 0.30
Hz

()))

Data Acquisition

Shaft RPM

- Rotational energy
- Theoretical efficiency
- Shaft stresses acceleration & shaft inertia

Voltage Generated

- Power produced
- Actual system efficiency

Tension in the Wire

- Shaft torque
- Force input

Optimization

- Generator load
 - Always on

Effect

 Rotation not conserved
 High power output

- High tension

Optimization

HARRIS

- Generator load
 Dynamic control
- Effect

 Continuous rotation
 Higher Power output
 Lower Tension

Design Drawbacks

Difficult to protect against corrosion

Only takes advantage of upward motion

Requires spring to keep tension in cable

Future Project Overview

- Ocean waves heave floating buoy
 Relative fluid motion
 - develops torque
- Torque results in power

Bi-directional Turbine

- Impulse turbine
- Symmetry results in uni-directional torque

Applications

- Wave farm array to provide power to grid
- Power for offshore platforms
- Power for sensor buoy

Conclusion

 Research findings from initial prototypes have lead to a more evolved design

 Collaboration with Harris Corp. will result in an ocean-ready prototype by April 2011

Acknowledgments

Florida Energy Systems Consortium
Harris Corporation

RRIS

University of Central Florida

