Combined Cooling, Heat, Power from Biomass and Solid Waste September 29th, 2010 FESC Summit University of Central Florida, Orlando Dr. William E. Lear, Dr. Jacob N. Chung Minki Kim, Elango Balu, Sada Sekar Mechanical and Aerospace Engineering University of Florida ### **Outline** - 1. Objective - 2. Project Impact - 3. Project Overview - 4. Experimental Program - 5. Integrated System Modeling - 6. Conclusions - 7. Future Work Plans # 1. Objective - Research and demonstration of a novel HiTS-PoWER technology that enables economic utilization of dispersed biomass and solid waste resources to produce electric power, cooling, heat and water - Maximizing integrated system efficiency and control system design - Producing economically viable power with minimal emissions #### **PoWER-HiTS System Flow Path** # 2. Project Impact (Benefits to Florida) #### Energy sustainability - Renewable resources otherwise wasted(MSW) - Provides transition pathway, little disruption - Closely integrates UF breakthroughs in three areas to achieve unparalleled efficiency - → Advanced gasification system - → Novel high temperature membrane H2 separator - → Novel power, fresh water, refrigeration, and heat plant - Flexible distributed power generation; Zero impact on water, space requirements, very low emissions # 2. Project Impact (Benefits to Florida) #### Economic benefits - High volume production of integrated systems envisioned within State; academic/industrial team all located within Florida - Innovations provide strong competitive advantage to Florida manufacturers of system and components - Near term potential for thousands of new, high-tech jobs in Florida; far term potential much higher - Stability in energy supply/enhanced grid stability decreases economic disruptions - (hurricanes provide more biomass feedstock, when it's most needed) # 3. Project Overview ### 3.1 PoWER ### **3.2 HiTS** # 4. Research Facilities at UF UF Gator Gasifier, Capstone C60 & Copeland Gas Booster # 4. 1. Modifications to Gasifier - Hearth section redesigned to hourglass shape - Top hopper sized to match the reduction circle - Original engine upgraded to 20KW Ford engine - Dedicated engine designed for gaseous fuels - Hearth section insulated to facilitate tar cracking - Installation of TC and Pressure sensors for DAQ - Flow measurement using Gas Meters installed ### 5. Demonstration unit **▶** Integrated HiTS-PoWER System Schematic