

<u>The Small Wind Industry:</u> Applicability for Florida

2nd Annual FESC Summit September 2010

What's So Compelling About Wind?

Wind dominates the renewable energy market. Economics is the reason: *Wind energy is the least expensive green power that has already been competing with traditional sources. At current average wholesale prices, wind costs 4.2 cents per kilowatt hour, compared with 4 cents for coal, 6.8 cents for natural gas, 9.1 cents for oil and 10 cents for nuclear power.**

* source: Rocky Mountain Institute

WIND INDUSTRY ON A MACRO SCALE

<u>ADVANTAGES</u>	<u>CHALLENGES</u>
RENEWABLE	VARIABLE BOTH IN GEOGRAPHY (CLASS) AND TIMING (SEASONAL AND DAY/NIGHT)
AVAILABLE GLOBALLY	OFF-GRID SYSTEMS – STORAGE ISSUES
LARGELY INSULATED FROM INFLATION	NOISE / ENVIRONMENTAL / PERMITTING
CLEAN AND CARBON-EMISSION FREE	TRANSPORT / INSTALLATION / MAINTENANCE ON A NATIONWIDE SCALE

TWO DISTINCT MARKETS WITHIN WIND:

UTILITY SCALE SYSTEMS

100KW AND UP - **99.93%** of capacity face the green and blue obstacles above

SMALL WIND MARKET

BELOW 100KW - .07% of installed US capacity face the blue obstacles above

WIND INDUSTRY - WHAT IS POSSIBLE?

<u>The US is the greatest easily-accessible wind resource in the world</u> Stated policy goal of 20% of US electricity by 2030 (US Department of Energy)

Is it possible?

2008: 25,369 installed MW – 1.26% of electricity demand, a **51%** increase from 2007 Highest Installed capacity: TX, IA, CA, MN, WA Highest % of Load: MN 7.5%, IA 7.1%, CO 6.0%, ND 4.9%, NM 4.4% Highest Growth Rates: MI (4,800%), UT (2,100%), NH (1,700%) WI (600%) Wind Map of US available at: http://www.windpoweringamerica.gov/wind_maps.asp

What is "off the map?"

DOE estimates that offshore wind could supply 100% of US electric needs. Local 2005 study: Florida has good wind east of 195 (which where the load is)

Small wind market:

17.3MW of installed capacity - Growth rate of 78% in 2008
30-fold growth expected within 5 years, driven by consumer and CORPORATE awareness grid-tie capability nationwide
30% federal ITC

BIG AND SMALL GROWTH

- > The US is the greatest easily-accessible wind resource in the world
- Stated policy goal of 20% of US electricity by 2030 (US Department of Energy)
- Highest % of Load: MN 7.5%, IA 7.1%, CO 6.0%, ND 4.9%, NM 4.4%
- > Consistent double digit growth rates even through the Great Recession

US ANNUAL WIND CAPACITY

SOURCE: AWEA 2009 Wind Industry Annual Market Report

Year	<u>2001</u>	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>
MW Installed	4,151	4,563	6,233	6,629	9,014	11,476	16,725	25,076	35,086
Growth Rates	68.7%	9.9%	36.6%	6.4%	36.0%	27.3%	45.7%	49.9%	39.9%

SMALL WIND INDUSTRY – EVEN GREATER POTENTIAL

US ANNUAL SMALL WIND CAPACITY SOURCE: AWEA 2009 Wind Industry Small Wind Outlook									
Year	<u>2001</u>	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>
MW Installed	2,100	5,200	8,400	13,278	16,563	25,128	34,865	52,239	72,539
Growth Rates 147.6% 61.5% 58.1% 24.7% 51.7% 38.7% 49.8% 38.9%								38.9%	

30-fold growth expected within 5 years, driven by consumer and corporate awareness; grid-tie capability nationwide ; 30% federal ITC

Does the Sunshine State have Wind?

	Wind Strength	Meters / Second	МРН	
	Class 1	< 5.6	< 12.5	
	Class 2	5.6 - 6.4	12.5 - 14.3	
	Class 3	6.4 - 7.0	14.3 - 15.7	Small Scale
Utility Scale	Class 4	7.0 - 7.5	15.7 - 16.8	Windpower
Windpower	Class 5	7.5 - 8.0	16.8 - 17.9	Feasible
Feasible	Class 6	8.0 - 8.8	17.9 - 19.7	

NOAA National Buoy Center Data & Coastal Weather Stations – Class 2 winds or better along approximately **85%** of Florida's Coast.

Inland Climatological Data shows inland class two winds in Apoka / Pensacola and higher class 1 winds in **most major metropolitan markets** – specifics of site selection and height can push many sites into class 2 status.

Source: November 2005 Florida Wind Initiative Study, DOE Wind Powering America Program performed by Advantek Consulting.

Why Are People Buying?

Environmentally Conscious

Economics

Emergency Preparedness

Electric Grid unreliable / non-existent

Leading Edge Adaptors

THE ECONOMICS OF SMALL WIND

Metric	Sco	pe	Driving Dynamic		wind m/s	kw /day
Rated Power (k/w)		1.5	Machine Efficiency		5.0	7.9
Wind Speed (m/s)		6.0	about 13 mph - light wind $-$		6.0	11.9
Kilowatts per Day		11.9			7.0	15.6
Days per Year		365			8.0	18.4
Kilowatts per year		4327				
Cost per kilowatt	\$	0.14	varies in cont. US to 24 cents			
Annual Electric Savings		\$606		paybk		
			in	years		
Installed Cost	\$ 6	6 <i>,</i> 500		10.7		
- Federal Tax Credit @30%	\$ (1	,950)	nationwide and stable	(3.2)		
- State / Local Tax Credit @5%	\$	<u>(325)</u>	varies from 0-50%, also local $_$	(0.5)		
Net Out of Pocket	Ş 2	4.225		7.0	Fach 1	cent
					rise in k	wh
Installed Cost	\$ 6	6,500			cost wi	ill
- Tower	\$	' (900)	"Airstream costs" – getting up in the wind - can be 20%		lower p by ½ ye	baybk ear
- Installation	\$	(500)	of total system cost			
Delivered Cost	\$ 5	5,400				
	The '	'big le	evers" are in Green			

EMERGENCY POWER FOR ESSENTIALS

- Power all of these items depending upon wind and system capacity.
- May vary upon personal usage.

OFF-THE-GRID SYSTEM (integrated w/ solar)

1kw model in operation (hybrid system with solar panels)

GRID-TIED INSTALLATION

1kw model showing 1st generation "swept blade" design

HYBRID SYSTEM SUPPLEMENTING GRID

Canary Islands Implementation – hybrid system to supplement unreliable & expensive electric service

Recent Technology Advances

WindE UltraQuiet 1500j Turbine

✓ Blade designpassive flow control to prolong point of separation

✓ Integrates with solar

✓ Permanent magnet generators – no maintenance

✓ Patented "Jettube" for greater efficiency and quietness

 ✓ Aerodynamic and electronic braking

> ✓ 12, 24 or 48V convertible configuration

BASIC SYSTEM UNDERSTANDING

An educated sales force needs to understand that a wind system contain multiple components that vary with the configuration. They should be designed to work together to provide maximum efficiency:

- Turbine Produces the power. WindE combines patented ultra-quiet blade technology with permanent magnet, direct drive generators (no gearbox).
- ✓ Tower Holds the turbine in the wind stream. WindE provides 30-foot lattice towers, and other options are available.
- ✓ Solar Panels We provide US-made Solar panels (but our systems can work with multiple suppliers).
- ✓ Hybrid Charge Controllers Plug-in capability for simultaneous use of wind power (AC current) and solar power (DC current), provides electronic braking mechanism, and can be configured to 12, 24 or 48 volt applications.
- ✓ Batteries Provide the power reserve to store energy in off grid systems, or provide backup power capabilities for grid-tie systems. WindE strongly recommends, and can provide, batteries specifically tailored for renewable energy systems.
- ✓ Inverters Convert DC battery power back to AC current for direct use by the homeowner (off-grid applications), and can step up the voltage to feed back into the grid (grid-tie).
- ✓ Smart Switch Allows your system to react to changing power conditions between your renewable system and the grid.
- Smart Meter Provided by your utility, it credits you for the power produced by your system.

CONFIGURATION DEPENDS ON NEED

If you want to:	Your System is:	Then you will need:	Estimated Consumer Results	To Consider:
Provide Power where there is none (a cabin, remote village)	Off-Grid Hybrid System	Turbine Tower Solar Panels,400W Hybrid Controller Batteries Off-Grid Inverter Installation	Estimated Retail MSRP: \$6,900** Net Retail w/Incentives: \$4,485* Estimated Power Production: Annual kWh: 5,276 kWh value: \$739 Estimated Payback: Payback years: 6.07	The battery bank is your power reservoir: more batteries = bigger power reserve
Have emergency power in case of power failure to run critical functions (refrigerator, lights) and reduce the electrical bill	Off-Grid Hybrid Smart System	Turbine Tower Solar Panels, 1000W Hybrid Controller Batteries Off-Grid Inverter Smart SWITCH Installation	Estimated Retail MSRP: \$8,700 Net Retail w/Incentives: \$5,655* Estimated Power Production: Annual kWh: 6,267 kWh value: \$877 Estimated Payback Payback years: 6.45	Tie into circuit panel for critical items (fridge) with renewable power. If reserve is low, smart switch pulls from the grid. If grid goes down, renewable reserve runs critical circuits.
Reduce your current electric bill as much as possible	Grid-Tie Hybrid System	Turbine Tower Solar Panels,1000W Hybrid Controller 2kw Grid-Tie Inverter Smart METER Installation	Estimated Retail MRSP: \$8,900 Net Retail w/Incentives: \$5,785* Estimated Power Production: Annual kWh: 6,700 kWh value: \$938 Estimated Payback Payback years: 6.17	Utility supplies a smart meter for free or very little cost. Grid-Tie inverter "runs meter backwards" -every watt of renewable power, lowers your net electricity usage.
Reduce your current electric bill as much as possible AND have emergency power in case of electric failure	Grid-Tie Hybrid Smart System	Turbine Tower Solar Panels, 1000W Hybrid Controller Batteries 3.5kw Grid-Tie Inverter Smart SWITCH Smart METER Installation	Estimated Retail MSRP: \$9,800 Net Retail w/Incentives: \$6,370* Estimated Power Production: Annual kWh: 6,700 kWh value: \$938 Estimated Payback Payback years: 6,79	Any power produced from renewable system charges batteries to max reserve, then the Smart Switch feeds power back into the grid. If the grid goes down, you now have a fully functional off-grid system with battery reserves.

HOW YOU VIEW THE FUTURE MAY DETERMINE THE SHAPE OF THE FUTURE

Suppose we constructed a nationwide network of wind tunnels?

Suppose we build tunnels where the load (population) is?

Suppose we produced wind there for 16 hours+ every day?

Suppose we run the tunnels more during the day when the load is highest?

Supposed it crossed the existing grid at multiple points, so you could build in an infinite amount of "switching options" in case of failure in one part of either system?

Suppose we placed the tunnels on the ground to eliminate much of the "airstream costs"?

Tomorrow's wind tunnel map?

Thank you for your time and attention.

May the wind be always at your back... (....and blowing at 10 meters per second).

WindE Systems 904-335-5040 www.winde.co 86554 Gene Lasserre Blvd Yulee, Florida 32097