### **Bacterial Conversion of Hemicellulosic Xylans to Biofuels and Chemicals**

#### James F. Preston, Guang Nong, Virginia Chow, Changhao Bi and John D. Rice

**University of Florida** 

Collaborators: L. O. Ingram, MCS K. T. Shanmugam, MCS F. Altpeter, PCMB G. Peter, PCMB

# Objective

Genetically engineer bacteria for digestion and fermentation of the hemicellulose fractions of agricultural residues (straw and sugar cane bagasse) and energy crops (poplar, eucalyptus and energy cane) to ethanol and lactic acid

### **Expected Outcome**

Development of biocatalysts for the cost effective production of fuel alcohols and bioplastics from underutilized renewable resources

# **OBJECTIVE:** Develop biocatalysts to provide maximal yields of alternative fuels and chemicals from lignocellulosics.



**SPECIFIC AIM**: Develop bacterial biocatalysts that efficiently convert hemicellulose-derived glucuronoxylan to ethanol and chemical feedstocks.

#### **Interaction of Major Polymeric Sugars in Lignocellulosic Biomass**



- Cellulose and glucuronoxylan are tightly associated
- Cellulose fibers form through hydrogen bonding interactions between individual cellulose stands
- and cellulose fiber association by coating oGlucuronoxylan acts to limit microfibril
  r interacting with surface cellulose strands
- The noncarbohydrate polymer lignin embeds the interacting cellulose and glucuronoxylan through ester linkages to glucuronoxylan

#### **Composition of Selected Ligncellulosic Resouces, % dry weight**

| <b>Feedstock</b>   | Glucan<br>(cellulose) | Xylan<br><u>(hemicellulose)</u> | <u>Lignin</u><br>17.6 |  |
|--------------------|-----------------------|---------------------------------|-----------------------|--|
| <b>Corn stover</b> | 37.5                  | 22.4                            |                       |  |
| Corn fiber         | 14.28                 | 16.8                            | 8.4                   |  |
| Pine wood          | 46.4                  | 8.8                             | 29.4                  |  |
| Popular            | 49.9                  | 17.4                            | 18.1                  |  |
| Wheat straw        | 38.2                  | 21.2                            | 23.4                  |  |
| Switch grass       | 31.0                  | 20.4                            | 17.6                  |  |
| Office paper       | 68.6                  | 12.4                            | 11.3                  |  |

Adapted from N. Mosier et al., 2005. Biores Technol. 96:673-686

#### Quantification of MeGA substitution 4-O-methylglucuronoxylan by <sup>13</sup>C-NMR



### **Dilute Acid Hydrolysis of Methylglucuronoxylan**



# Xylose fermentation products from *E.asburiae* JDR-1 and *E.asburiae* JDR-1 E1 (*pfl*-, pLOI155)

|                              | Fermentation products (mM) |         |         |         |            |         |                                                  |  |
|------------------------------|----------------------------|---------|---------|---------|------------|---------|--------------------------------------------------|--|
|                              | Succinate                  | Lactate | Formate | Acetate | Butanediol | Ethanol | Ethanol yield<br>(% of theoretical) <sup>a</sup> |  |
| <i>E. a.</i> JDR-1           | 12.7                       | 5.6     | 15.0    | 25.2    | 13.4       | 42.6    | 19.2                                             |  |
| <i>E. a.</i> JDR-1 (pLOI555) | 2.2                        | 1.2     | 3.6     | 4.2     | ND         | 217.4   | 98.0                                             |  |

**a**: Yield of 100% theoretical defined as 5 mole ethanol formed/ 3 mole xylose consumed.

# Summary 1

- Gram-negative *Enterobacter asburiae* E1 (pLOI555) produced ethanol from glucuronoxylan hydrolysate in a theoretical yield of 98% compared to 63% for Gramnegative *Escherichia coli* KO11.
- The genetic basis for this metabolic potential may be transferred to *E. coli* and *Klebsiella* biocatalysts for more efficient bioconversion of hemicellulose hydrolysates to biofuels and chemicals.

#### **Technologies for Saccharification of Hemicellulose**

| <u>Treatment</u>                           | <u>Xylose</u> | <u>Aldouronate</u> | <u>Inhibitors</u> |
|--------------------------------------------|---------------|--------------------|-------------------|
| Steam Explosion                            | X,X2,X3       | MeGAX1,2,3         | < 0.1% Furfural   |
| Dilute Acid, 140°C                         | Х             | MeGAX              | < 0.25% Furfural  |
| AFEX, 160°C                                | Xn            | MeGAXn             |                   |
| 0.1 M Ca(OH) <sub>2</sub><br>GH10 xylanase | X2, X3        | MeGAX3             |                   |

# Pretreatment of O-acetyl-arabinoglucuronoxylan and enzymatic depolymerization of 4-O-methylglucuronoxylan



# **Properties of xylanolytic** *Paenibacillus* **sp. JDR-2 selected for growth on MeGX**





# Modular architecture of XynA1 secreted by *Paenibacillus* sp. JDR-2



#### **Regulation of expression of aldouronate-utilization genes in** *Paenibacillus* JDR-2



#### **Processing of Aldouronic Acids by** *Paenibacillus* sp. JDR



### **Depolymerization of MeGXn with Xyl10B and AguA** from thermophilic *Thermotoga maritima*



Lane 1 and 7: standards of MeGX<sub>1-4</sub> Lane 2 and 6: standards of X<sub>1-4</sub> Lane 3: sweetgum with the Xy110B Lane 4: sweetgum xylan with Xy110B and AguA Lane 5. sweetgum xylan

# **Summary 2**

Cell-surface anchored GH10 xylanases catalyze depolymerization of glucuronoxylan and vectoral processing of products.

Bacteria endowed with this capability may be developed for direct conversion of hemicellulosic resources to biobased products

Thermophilic  $\alpha$ -glucuronidases and endoxylanases produced in planta may enhance xylan bioconversion by bacterial biocatalysts.

These systems may allow the application of alkaline pretreatment protocols to reduce costs and increase yields of fuels and chemicals from agicultural residues and energy crops.

#### **Options for Biomass and Solid Waste Conversion to Energy**



### Acknowledgements

Virginia Chow, Adnon Hasona, Guang Nong, John Rice, Franz St. John, Lorraine Yomano, and Kheir Zuobi-Hasona

**Dr. Sheilachu P. Gomez, Florida Center for Renewable Chemicals and Fuels, University of Florida.** 

US Department of Energy Grants DE FC36-99GO10476 and DE FC36-00GO10594.

The Consortium for Plant Biotechnology Research Project OR22072-94.

**Current funding from the Florida Energy Systems Consortium** 

**Institute of Food and Agricultural Sciences, University of Florida Experiment Station, as CRIS Project MCS 3763.**