Carbon Revenue Redistribution Strategies In Deregulated Power Markets

Patricio Rocha and Tapas K. Das

Motivation

- Carbon revenue redistribution is a feature common to cap-and-trade and carbon tax programs
- Amount of money collected would be significant (estimated \$69 to \$126 billion in first 5 years)

– This is a new source of revenue

 Economists have argued in favor of redistributing the revenue to mitigate potential negative economic impact

Market Schematic

Potential Recipients

- Households (consumers)
 - Why? Electricity companies will pass on to the consumers the cost of allowances/carbon tax
 - \$1,158 to \$4,119 extra (in 1999 dollars) per household
- Low emission generators
 - Why? Need to increase market share of lowemission generators if emissions reductions are to be achieved
 - Targets for renewable based generation (EU 21%)

Literature (Households)

- Lump sum redistribution
 - Barnes and Breslow (2001)
- Reduction of distortionary taxes
 - Goulder (1995), Parry and Bento (2000)
- Lump sum redistribution more helpful for lowincome families
 - Dinan and Rogers (2002)

Literature (low-emission gencos)

- Common in U.K., Denmark, Japan, Netherlands, among others
- Bills in the U.S. Congress have started considering these subsidies
 - Cantwell bill considers 25% or carbon revenue earmarked for clean energy investments
- Connecticut (RGGI Member) considers 23% of allowance auction revenue to support renewable energy programs

Our Model

- We consider:
 - Bid subsidies for low-emission generators
 - To lower consumer prices across the network
 - R & D subsidies for low-emission generators
 - To encourage sustained cost reduction for low-emission technologies (PV, wind, biomass, geothermal)

Our Model (continued)

Considers

- network constraints via Optimal Power Flow (OPF)
- multi-year horizon
- cap-and-trade (or carbon tax) implemented on a defined geographical region
- regional equity issues related to the "equal per capita redistribution rule"

Types of Subsidies

• Bid subsidies

Effect is realized during current year

- R & D subsidies
 - Effect is realized throughout the planning horizon
 - Knowledge stock is a function of cumulative stock (investment) Y of R & D $K(Y^t) = (\frac{Y^{t-1}}{Y^0})^{\beta}$ (Fischer and Newell, 2008)
 - The impact of knowledge stock on production cost C is given by $K^{-1}C$

Types of Subsidies and OPF

• R & D subsidies

– We define the reduction on production cost as:

$$R = C - K^{-1}C$$

- Since the above expression is non-linear, we use a least squares approximation as $\hat{R} = \alpha K$

where α is the regression coefficient

Mathematical Formulation

Mathematical Formulation

Objective function

– Quadratic, non-convex

Solved using

– CONOPT3, MINOS, KNITRO

Model Application

- 4-node sample network
- Planning horizon: 5 years
- 2 low emission generators
- 1 fossil fuel generator
- 1 load

4-node sample network

Application

- 2 scenarios
 - discriminatory subsidies
 - non-discriminatory subsidies
- Allowance market scenario
 - perfectly competitive
 - allowances are sold at \$3.38 in year 1
 - this price is increased 10% each year

Application

Initial bidding parameters

Genco	e (\$/MWh)	f(\$/MWh^2)
Fossil Fuel	10.524	0.05
Green Genco 1	22	0.05
Green Genco 2	24	0.05
Load	а	b
Load 1	27	0.05

Initial bidding parameters

• R&D learning factors α₁=0.005176, α₂=0.006878

Recall that reduction in production cost (due to subsidies) is given by $\hat{R} = \alpha K$

Results

• Discriminatory subsidies Scenario

- R&D subsidies are allocated earlier, bid subsidies later, when fossil fuel bids are higher
- R&D subsidies for genco 2 are distributed earlier even though its α is lower

Results

• Non-discriminatory subsidies Scenario

- R&D subsidies continue to be allocated earlier. Bid subsidies later
- Increased fairness in revenue redistribution at the expense of reduced total social welfare
- Since genco 2 produces more, total subsidies for genco 2 are higher

Results – All scenarios

Revenue recycling prevents demand from decreasing significantly without increasing carbon emissions and prices.

Summary

- We have developed a mathematical model for redistributing carbon revenue in a deregulated electricity market.
- In the example problem,
 - R&D subsidies are distributed earlier
 - location of generators in network plays a role in amount of subsidies allocated
 - revenue recycling strategy can be used to mitigate demand reduction without increasing emissions and prices

Thank you. Questions?

