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Challenges of Renewable Energy Integration

Some of the Challenges

1 Large sunk cost (decreasing!)

2 Engineering uncertainty

3 Policy uncertainty

4 Volatility

Start at the bottom...
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Challenges of Renewable Energy Integration

Some of the Challenges
What’s so scary about volatility?

4 Volatility
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Challenges of Renewable Energy Integration

Some of the Challenges
What’s so scary about volatility?

4 Volatility =⇒ greater regulation needs
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Challenges of Renewable Energy Integration

Comparison: Flight control
How do we fly a plane through a storm?

Brains

Brawn
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What Good Are These?
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Challenges of Renewable Energy Integration

Comparison: Flight control
How do we operate the grid in a storm?
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Challenges of Renewable Energy Integration

How do we operate the grid in a storm?
Disturbance decomposition

Jan 01 Jan 02 Jan 03 Jan 04 Jan 05 Jan 06

G
W

0

1

2

3

4 GW (t) = Wind generation in BPA, Jan 2015 

Scary ramps

Jan 01 Jan 02 Jan 03 Jan 04 Jan 05 Jan 06

G
W

0

1

2

3

4 G

Goal: 

W (t) = Wind generation in BPA, Jan 2015 

Scary ramps

GW (t) +Gr(t) ≡ 4GW
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FERC Pilots the Grid

FERC 745: Demand & Generation smooth the Grid
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FERC Pilots the Grid

Origin of FERC 745 – Incentives for Demand Response

EnerNOC’s plea: (amongst others)
... demand response resources simply cannot be procured because they do
not yet exist as resources. Such investment will not occur so long as
compensation undervalues demand response resources.

FERC’s Decision: The Commission concludes that paying LMP can
address the identified barriers to potential demand response providers.

FERC 745 is Born!
134 FERC ¶61,187

UNITED STATES OF AMERICA
FEDERAL ENERGY REGULATORY COMMISSION

18 CFR Part 35
[Docket No. RM10-17-000; Order No. 745]

Demand Response Compensation in Organized Wholesale Energy Markets
(Issued March 15, 2011)

The outcome?
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FERC Pilots the Grid

FERC 745 Is Dead!

Conjecture: It had to die.

FERC 745 Nirvana:

Peaks shaved!

Contingencies resolved in seconds!!

Prices smoothed to Marginal Cost!

Contour Map:  Real Time Market - Locational Marginal Pricing Help?

$10/MWh

Nirvana @ ERCOT

The problem: In this market, there is no opportunity without crisis

The paradox: In this nirvana,
there is no business case for demand response
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FERC Order 755
Pay-for-Performance
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Requires ISO/RTOs to pay regulation resources
based on actual amount of regulation service provided

(speed and accuracy).
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FERC Order 755
Pay-for-Performance
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Two part settlement:

1 Uniform price for frequency regulation capacity

2 Performance payment for the provision of frequency regulation
service, reflecting a resource’s accuracy of performance

Performance? Now interpreted as mileage:

Payment ∝
∫ T

0

∣∣ d
dt
G(t)| dt (or discrete-time equivalent)

Not perfect, but it is creating incentives
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FERC Pilots the Grid

FERC Order 755
Not perfect

PJM coordinates frequency regulation through two di�erent control signals:
 RegD - fast moving dynamic regulation (e.g. batteries, �ywheels)
 RegA - traditional regulation resources (e.g. gas turbine)

PJM introduces a second, fast
moving regulation signal (RegD)

Regulation requirements 
reduced by 22%

Further reductions
since then - now 30%

SEPTEMBER 2012 OCTOBER 2012
PAY FOR PERFORMANCE IMPLEMENTED

MARKET CLEARING PRICES

DYNAMIC FAST RESPONDING RESOURCES (REGD) REGULATION REQUIREMENTS (MW)

$13.75
MWh

$38.75
MWh

OCTOBER 2013

OCTOBER 2012

PJM’s finding: Compensation on
average is multiplied 3 times or more.

=⇒ Incentive to follow their fast
moving RegD signal even if the unit is
only capable of following at 50%.
Performance Based Regulation: Year One Analysis
Regulation Performance Senior Task Force PJM
Interconnection. Oct. 12, 2013

=⇒ more FERC orders

What is the value of regulation?
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Demand Dispatch

We want: Responsive Regulation
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and the consumer:

High quality AS?

Reliable?

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?

Demand Dispatch can do all of this! (by design)
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We want: Responsive Regulation
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and the consumer:

High quality AS? (Ancillary Service)
Does the deviation in power consumption accurately track the desired
deviation target?

Reliable?

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?

Demand Dispatch can do all of this! (by design)
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Fig. 10. Coal-�red generators do not follow regulation signals precisely....
 Some do better than others

Regulation service from generators is not perfect
Frequency Regulation Basics and Trends — Brendan J. Kirby, December 2004

Reliable?
Cost effective?
Is the incentive to the consumer reliable?
Customer QoS constraints satisfied?

Demand Dispatch can do all of this! (by design)
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Demand Dispatch

We want: Responsive Regulation
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and the consumer:

High quality AS?

Reliable?
Will AS be available each day?
It may vary with time, but capacity must be predictable.

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?

Demand Dispatch can do all of this! (by design)
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Demand Dispatch

We want: Responsive Regulation
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and the consumer:

High quality AS?

Reliable?

Cost effective?
This includes installation cost, communication cost, maintenance,
and environmental.

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?

Demand Dispatch can do all of this! (by design)
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Demand Dispatch

We want: Responsive Regulation
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and the consumer:

High quality AS?

Reliable?

Cost effective?

Is the incentive to the consumer reliable?
If a consumer receives a $50 payment for one month, and only $1 the
next, will there be an explanation that is clear to the consumer?

Customer QoS constraints satisfied?

Demand Dispatch can do all of this! (by design)
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We want: Responsive Regulation
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and the consumer:

High quality AS?

Reliable?

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?
The pool must be clean, fresh fish stays cold, building climate is
subject to strict bounds, farm irrigation is subject to strict constraints,
data centers require sufficient power to perform their tasks.

Demand Dispatch can do all of this! (by design)
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Demand Dispatch

Control Architecture
Frequency Decomposition for Demand Dispatch

Power GridControl Flywheels
Batteries
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Actuator feedback loop
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Today: PJM decomposes regulation signal based on bandwidth,
R = RegA + · · · + RegD

Proposal: Each class of DR (and other) resources will have its own
bandwidth of service, based on QoS constraints and costs.
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Demand Dispatch

Control Architecture
Frequency Decomposition for Demand Dispatch
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Control Architecture
Frequency Decomposition for Demand Dispatch

Balancing Reserves from Bonneville Power Authority:

−800
−600

-1000

−400
−200

0
200
400
600
800

BPA Reg signal
(one week)

M
W

= HVAC + Pool Pumps

16 / 26



Demand Dispatch

Control Architecture
Frequency Decomposition for Demand Dispatch

Balancing Reserves from Bonneville Power Authority:

−800
−600

-1000

−400
−200

0
200
400
600
800

BPA Reg signal
(one week)

M
W

0

−800
−600

-1000

−400
−200

200
400
600
800

M
W

−800
−600

-1000

−400
−200

0
200
400
600
800

= +

= HVAC + Pool Pumps

16 / 26



Demand Dispatch

Control Architecture
Frequency Decomposition for Demand Dispatch

Balancing Reserves from Bonneville Power Authority:

−800
−600

-1000

−400
−200

0
200
400
600
800

BPA Reg signal
(one week)

M
W

0

−800
−600

-1000

−400
−200

200
400
600
800

M
W

−800
−600

-1000

−400
−200

0
200
400
600
800

= +

= HVAC + Pool Pumps

16 / 26



0

−800
−600

-1000

−400
−200

200
400
600
800

M
W

=

Buildings as Batteries



Buildings as Batteries

Buildings as Batteries
HVAC flexibility to provide additional ancillary service

◦ Buildings consume 70% of electricity in the US
HVAC contributes to 40% of the consumption.

◦ Buildings have large thermal capacity

◦ Modern buildings have fast-responding equipment:
VFDs (variable frequency drive)
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Buildings as Batteries

Buildings as Batteries
Tracking RegD at Pugh Hall — ignore the measurement noise

In one sentence:

Ramp up and down power consumption, just 10%, to
track regulation signal.
Result:

PJM RegD Measured

Po
we

r
(k

W
)

0

1

-1
 

 

0 10 20 30 40
Time (minute)

18 / 26



Buildings as Batteries

Buildings as Batteries
Tracking RegD at Pugh Hall — ignore the measurement noise

In one sentence: Ramp up and down power consumption, just 10%, to
track regulation signal.

Result:

PJM RegD Measured

Po
we

r
(k

W
)

0

1

-1
 

 

0 10 20 30 40
Time (minute)

18 / 26



Buildings as Batteries

Buildings as Batteries
Tracking RegD at Pugh Hall — ignore the measurement noise

In one sentence: Ramp up and down power consumption, just 10%, to
track regulation signal.
Result:

PJM RegD Measured

Po
we

r
(k

W
)

0

1

-1
 

 

0 10 20 30 40
Time (minute)

18 / 26



Buildings as Batteries

Buildings as Batteries
Tracking RegD at Pugh Hall — ignore the measurement noise

In one sentence: Ramp up and down power consumption, just 10%, to
track regulation signal.
Result:

PJM RegD Measured

Po
we

r
(k

W
)

0

1

-1
 

 

0 10 20 30 40
Time (minute)

18 / 26



Buildings as Batteries

Pugh Hall @ UF
How much?
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. One AHU fan with 25 kW motor:
> 3 kW of regulation reserve

. Pugh Hall (40k sq ft, 3 AHUs):
> 10 kW

Indoor air quality is not affected

. 100 buildings:
> 1 MW

That’s just using the fans!
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Buildings as Batteries

Buildings as Batteries
What do you think?

Questions:

Capacity?

Tens of Gigawatts from commercial buildings in the US

Can we obtain a resource as effective as today’s spinning reserves?

Yes!! Buildings are well-suited to balancing reserves,
and other high-frequency regulation resources

much better than any generator

How to compute baselines?

Who cares? The utility or aggregator is responsible for the equipment –
the consumer cannot ‘play games’ in a real time market!

What open issues do you see?
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Intelligent Pools in Florida

Example: One Million Pools in Florida
How Pools Can Help Regulate The Grid

 1,5KW 400V

Needs of a single pool

. Filtration system circulates and cleans: Average pool pump uses
1.3kW and runs 6-12 hours per day, 7 days per week

. Pool owners are oblivious, until they see frogs and algae

. Pool owners do not trust anyone: Privacy is a big concern

Randomized control strategy is needed.
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Intelligent Pools in Florida

Pools in Florida Supply G2 – BPA regulation signal∗
Stochastic simulation using N = 105 pools
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∗
transmission.bpa.gov/Business/Operations/Wind/reserves.aspx
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Intelligent Pools in Florida

Pools in Florida Supply G2 – BPA regulation signal∗
Stochastic simulation using N = 105 pools
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Each pool pump turns on/off with probability depending on
1) its internal state, and 2) the BPA reg signal
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Conclusions

Conclusions
Barriers to renewable energy

1 Volatility
Not so bad! Demand Dispatch: an inexpensive and reliable resource

by design
Tremendous capacity in Florida

2 Engineering uncertainty
This is real We don’t know why the grid is so reliable today.
Need for better understanding of grid/distribution/social dynamics

3 Policy uncertainty
Scary!

Need for Research in Engineering and Economics
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