

Wind Power and Renewables Division Facts at a glance

Siemens Wind Power facts

- One of the world's leading suppliers of wind power solutions
- Acquired Danish wind turbine manufacturer Bonus Energy A/S in 2004
- Installed Base: > 16,300 turbines with ~ 31,000 MW capacity
- Installed in FY 2015: > 1.970 turbines with > 5,6 GW capacity
- ~12,850 employees globally incl. Wind Service
- Revenue in FY 2015: € 5,7 billion

Wind Power and Renewables Division Market and locations

Market

Market growth for wind energy (installed capacity in MW) is estimated at 2% a year (2012 - 2018)*:

- Onshore (2012 2018): 0.7% p.a.
- ▶ Offshore (2012 2018): 13.4% p.a.

Market position:

- ▶ No. 1 in offshore market
- ▶ No. 4 in global installations (2013)

Locations

Headquarters: Hamburg, Germany

Production locations:

Denmark

- ▶ Nacelles: Brande
- Blades: Aalborg
- ▶ Blades: Engesvang

China

▶ Blades and Nacelles: Lingang City, Shanghai

Americas

- ▶ Nacelles: Hutchinson, Kansas, USA
- ▶ Blades: Fort Madison, Iowa, USA
- ▶ Blades: Tillsonburg, Ontario, Canada

Sales and service centers worldwide

^{*} Market Update 2013

Wind Power Customer focused regional set-up

Siemens Wind Power: Americas Facts at a Glance

Siemens Americas Wind Power facts

One of the world's leading suppliers of wind power solutions

Installed base in Americas: ~ 7,100 turbines with > 13,900 MW capacity 1

Installed in Americas: >7,200 MW in 2012 - 2015

~1,800 Americas employees (~1,100 in manuf., ~550 in service)

Americas headquarters located in Orlando, FL

Strong presence in key markets

The Siemens Wind Power product platforms

NetConverter® Superior electrical capabilities

- Maximum flexibility to comply with different grid codes.
- Low OPEX due to less wear and tear of components
- Potential remuneration from ancillary services

SWT-2.3-120 The new standard

SIEMENS

D3: SWT-3.3-130 Simplicity remains keys success criteria.

Aeroelastically Tailored Blades in the Siemens Product Portfolio

ATB Blade Design

Recent Siemens Blades

ATB technology is featured in Siemens most recent products (gold). Larger ATB blades have replaced smaller traditional straight blades on existing wind turbines.

SWT-2.3-120: Optimized for G2 Platform - North American Market

- Designed in Boulder, CO
- Manufactured in Ft. Madison, IA
- Designed w/ Vortex Generators & DinoTails™ for robust performance in the American Plains

National Wind Technology Center – Boulder CO

Page 13

NREL-Siemens CRADA (Cooperative Research and Development Agreement)

- DOE/NREL and Siemens Wind Power
- SWT-2.3-101 wind turbine is erected at NWTC, Boulder Colorado
- Initial Budget: DOE/NREL \$5M ---- Siemens \$9M
- Initial Agreement: Jan 2009- Jan 2013
- Recently extended until Jan 2018
- New 108m rotor installed late 2013.

Close cooperation between NREL and Siemens on testing campaigns and data Analysis.

National Wind Technology Center Siemens 2.3-108 wind turbine

- Have a purchase power agreement with Public Service of Colorado
- Initial Service Date of 2010
- Get paid when and if available
- Interconnection through NREL system to the local utility interface

Concrete tower prototype

Offshore – Leading player in strongest growing market

2000: 40 MW Middelgrunden, DK

Offshore potential is "unlimited"

Source: Sector Energy

Getting the costs of energy down by innovation B75 – one of the world's largest rotor blades

- Increased rotor-swept area harvests more wind and is thus crucial for the annual energy yield of the turbine.
- IntegralBlade-Technology: the world's largest fiberglass component cast in one piece.
- No seams or glued joints and no adhesive, all of which saves weight.

Offshore Fixed Foundation Types

- Most offshore foundations are fixed to the bottom the of the ocean.
- Normally located in water no more than 60 meters of depth
- Most common foundation is Monopile but large turbines are using jacket foundations

Floating Foundation Types

- Many variations of floating offshore platform
- Siemens experience with Spar Buoy
- Most applications will come in the Pacific Ocean in deep water
- Large challenge with cable systems under the water.

The World's first floating turbine

Hywind

- Cooperation on technology with Statoil Hydro to develop World's first floating offshore installation
- In 2009 Siemens installed the first turbine in Norway at a water depth of about 220 meters
- Floating offshore turbines could be installed at sites with greater water depths
- New Project off Scotland with five SWP
 6 MW wind turbines

Thank You.....

