Smart Grid and Storage Notes, Moderator- Sean Meyn

Question 1: If the Florida SUS was to develop a major proposal (e.g. HUB, STC, ERC), what would be the technical problem statement/vision and title? What would be the benefit to the state (e.g. increased energy independence, job creation, economic development)?

Answer: Storage doesn't solve a problem. However a knowledge of the grid system goes a long wy to solve the problem.

Kind of Storages:

Batteries - Li-ion, Li-Air batteries, super oxide batteries

MIT recent battery development \rightarrow ions are much cheaper

Question 2: Assumption toward discharge of industrial batteries?

Answer: Ideas of every household creating and storing its own energy system/storage (e.g. community storage)

- Designing from scratch
- Also within the academic communities, more ideas of better means of storing energy
- Smart meters from car batteries through the grids
- Think about energy storage appropriately
- Flexible manufacturing
- Think about raising water bodies to regulate voltage (e.g. Pacific Northwest has good dams to implement such tasks
- Distributed energy storage, economically defined algorithms
- Designed battereies based on Super oxides

Question 3: What are the interim steps between where we are now and the future?

Answer:

- Show a functional design/model
- Develop a product and make it commercially available
- Electrification of cars in Florida is worth exploring
- Consider cost and size (e.g. introducing dynamic signals)
 - Customers are more concerned of their privacy and low cost
- Storing natural gas because unfortunately Florida can not hold dams
- Possible fuel hydrogen gas stored in buckyballs could help store hydrogen gas

Answer to proposed question:

- Merge and integrate smart grids as energy storage in a very efficient way
- Studying new battery technology
 - Enhacing the stability
- Buildings with high energy capability could also help
- Reduce fluctuations between load an generations (e.g. developing self-regulated appliances)
- *The biggest challenge of implementing smart grids is in getting the customers to buy the product
- Scientists should design their research works to respect privacy
- Develop a smart grid that is also capable of storing energy with appropriate privacy to customers
- A good proposal goes with good business
 - it is essential to figure out the cost of implementing the design proposal
- A problem that may be encountered could be that of balancing the socio-economic and technical issues

Summary: Merge and integrate smart gris and energy storage in a very efficient way.

- Space consider using parking lots
- How much space
- Technology with better control system/optimization
- Real time prices to consumers with comfort, convenience
- Respect of consumer privacy
- Individual responsibility for damage/educating customers
- Proper amount/effective government regulations
- Self optimized nano-grid with efficient distributed energy
- Scale-map systems/incentives from manufacturers that would aid optimize energy storage.

	Name	Affiliation	E-mail
1.	Walter Clemence	Florida Public Service Commission	walter.clemence@psc.state.fl.us
2.	Laura Hersh	Florida Public Service Commission	lhersch@psc.state.fl.us
3.	David Bates	Florida Power and Light	david.bates@fpl.com
4.	Omar Faruque	Florida State University	faruque@caps.fsu.edu
5.	Roger Lewis	Lakeland Electrical	roger.lewis@lakelandelectric.com
6.	Zhixin Miao	University of South Florida	zmiao@usf.edu

Smart Grid and Storage Round-table Attendees

7.	Jonathan Brooks	University of Florida	jonathanbrooksUF@gmail.com
8.	Ali Hariri	Florida State University	ahh13@my.fsu.edu
9.	Bob Moye	University of Florida	bobmoye@opfire.net
10.	Yue Chen	University of Florida	yuechen@ufl.edu
11.	Lingling Fan	University of South Florida	linglingfan@usf.edu
12.	Hui Li	Florida State University	hli@caps.fsu.edu
13.	Daniel Hallinan Jr.	Florida Agricultural and Mechanical University - Florida State University (FAMU-FSU)	dhallinan@fsu.edu
14.	Luna Lao Gloria	Florida Atlantic University/ Universidade Federal de Minas Gerais UFMG Brazil	lunaleaogloria@gmail.com
15.	Onyekachi Oparaji	Florida Agricultural and Mechanical University - Florida State University (FAMU-FSU)	odo12@my.fsu.edu
16.	Charles Weatherford	Florida Agricultural and Mechanical University (FAMU)	charlesweatherford@famu.edu