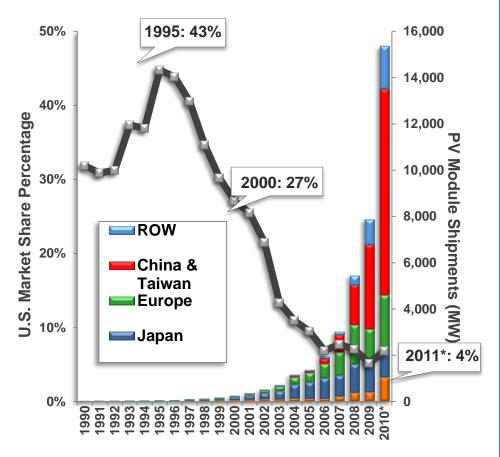
International Consortium for Advanced Manufacturing Research (ICAMR)

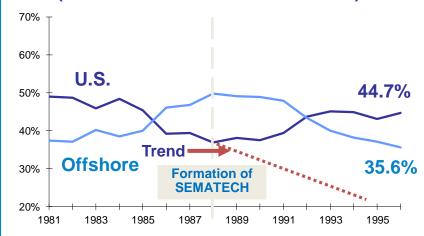
International Technology Consortium


**ICAMR Confidential** 

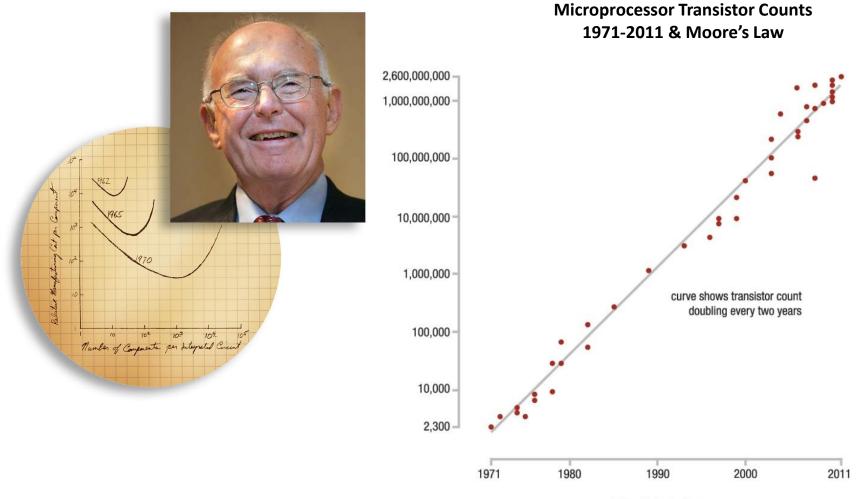
# Public-Private Partnership Consortium Strength and Success Factors

- A clear industry-led model and mission
- Optimized to drive industry alignment in critical focus areas
- Complex technical program management with measurable success criteria
- Leveraging of government and industry funds
- Commercialization of industry and research community innovations
- Focused on development and improvement of complete value chain
- Member engagement:
  - Member company assignees for tech transfer
  - Member advisors at all levels (strategic, technical, operational)
- Improved manufacturing productivity keeps industry advancing
  - New products / markets, improved competitiveness and productivity
- Agility to adapt to changing needs
- Highly effective leverage High ROI

# U.S. Manufacturing Market Share


Global & U.S. Annual PV Shipments by Region



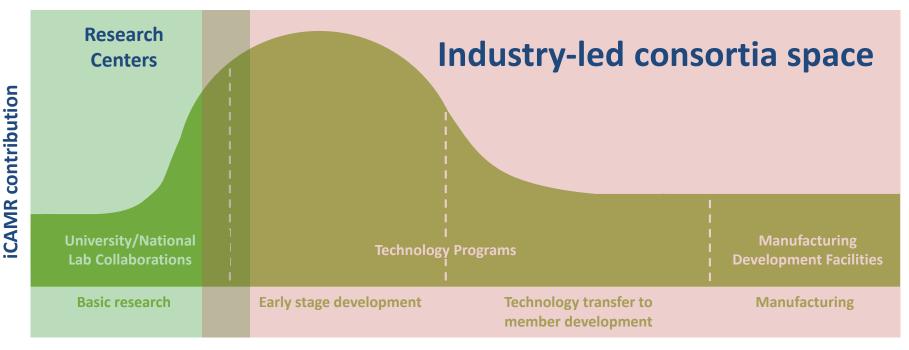

"The most significant finding of the Task Force is that U.S. *technology leadership* in semiconductor manufacturing is rapidly eroding and that this has serious implications for the nation' s economy and immediate and predictable consequences for the Defense Department."

- Defense Science Board Task Force on "Semiconductor Dependency - February 1987

World Semiconductor Market Share (U.S. vs. Offshore Merchant Sales)



# Moore's Law Driving both <u>Performance</u> and <u>Cost</u>




Date of Introduction

# Comericalization "Valley of Death"

### Bridging research, development, and manufacturing

- An industry-led, membership driven consortium
- Driving technical development and consensus for the industry
- Pulling research into the industry mainstream
- Leading major programs to address critical industry manufacturing challenges
- Focus on manufacturability process development / supply chain / prototyping



# Emerging Technologies - Challenges and Solutions

### The challenge

### **Collaborative solutions**

| <ul> <li>Industry alignment</li> </ul>                                                                       | Create industry roadmap and standards                                                                                                           |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Significant process, manufacturing, and technical design challenges</li> </ul>                      | <ul> <li>Collaborative R&amp;D, access to equipment and<br/>facilities to speed process and product development</li> </ul>                      |
| <ul> <li>Lack of industry collaboration, direction,<br/>and alignment around needs/challenges</li> </ul>     | <ul> <li>Utilize &amp; expand consortium model across entire value chain,<br/>develop a robust supplier industry around common needs</li> </ul> |
| <ul> <li>Access to leading-edge capabilities</li> </ul>                                                      | <ul> <li>Build / provide access to advanced manufacturing development<br/>facilities &amp; labs</li> </ul>                                      |
| <ul> <li>Testing and reliability</li> </ul>                                                                  | Establish critical test, reliability, and analytical capabilities                                                                               |
| Manufacturing cost                                                                                           | <ul> <li>Improve manufacturing methods to enhance<br/>productivity and reduce costs</li> </ul>                                                  |
| <ul> <li>System integration, technology commercialization, workforce development</li> </ul>                  | Launch specialized programs and infrastructure<br>to support industry needs and growth                                                          |
| <ul> <li>Emerging technologies manufacturing scale-up<br/>challenges – small and large businesses</li> </ul> | • Leverage industry-government-university capabilities<br>and resources through the consortium to<br>provide manufacturing scale solutions      |

## **ICAMR** New Era of International Industry Program Collaboration

Launch innovation networks: bringing industry, universities and governments together

### Industry

- Emerging Technologies
- Manufacturing
- Commercialization





### Government

- International
- State of Florida
- National research labs and agencies
- Attract joint funds

#### Universities

- Universities in U.S., Europe, and Asia
- Funded research
- New ideas and approaches
- Partnered research capabilities





### **Suppliers**

- Equipment
- Materials
- Software
- Industry R&D Labs & Programs

### **ICAMR** Consortium Proposal and Mission Summary

#### Consortium Goals

- Establish international consortium focused on the >\$500B advanced sensors and devices industries
- Create and fund a world-class facility for advanced R&D, commercialization & manufacturing (Florida)
- Form a trusted, participant-friendly business and operational relationship
- Drive integration of advanced processes and materials on Si into next-gen devices & packaging
- Serve as a manufacturing development platform to attract / grow new technologies & products
- Establish base for future centers Manufacturing Competitiveness, Adv. Energy, Emerging Tech Commercialization
- Solution Requirements for Emerging Technology Manufacturing Gaps
  - Emerging industries require access to affordable advanced devices and materials integration platform
  - "Smart Planet" future sensors and advanced devices are required to have higher performance, lower power, resistance to harsh environments → at low cost (in everything cars to biomedical products)
- Differentiator
  - International advanced materials and device manufacturing development center focused on:
    - Integration of semiconductor based processes, equipment, materials & circuits into future products
      - Smart sensors and photonics devices, etc.
- Mission
  - Partners' one-stop for development and integration of advanced devices and materials
    - Processes, tools, prototyping, EDA, and providing access to materials (like GaN, InGas, and other III-V materials)
    - Significant leveraged shared access and cost reductions for each participant
  - Attract entire supply chain (tool, materials,...) for complete R&D center to benefit participants
  - Accelerate technology commercialization by providing solutions to technology and capability gaps
    - Across multiple technology fields (Universal Smart Sensors, Photonics, Advanced Energy,...)

# ICAMR Technology Platforms – Phase 1

ICAMR will be the central foundation for four Manufacturing Development Centers located in Florida and have two functional platforms:

- 1. Advanced Materials Development Line
  - Designed to support a broad range of industries (biomedical, agriculture, environmental,...)
  - GaN, GaAs, InGaAs and SiGe MOCVD deposition tools utilizing 8" silicon substrates
  - Universal Smart Sensors, Advanced Photonics Devices, and III-V materials
    - Multipurpose product applications (ionic, molecular, gas-chemFETs sensor, w/ wireless communication)

#### Note: Total market for Advanced Devices components expected to reach <u>\$47.5B</u> by 2017

- 2. Advanced Packaging, Test, and Device Integration Development Line
  - Back-end processing and packaging line for prototype development and commercialization
    - Biomedical, Oil and Gas, Aerospace/Defense, Environmental, Agriculture, Environmental Sensors
  - Advanced Optics and photonics Devices wide range of advanced applications (SIP)
- Note: Overall sensor market expected to reach <u>\$116B</u> in 2019

#### Key performance attributes of these advanced materials for emerging technologies:

- High sensitivity
- Low Power
- Harsh environments performance

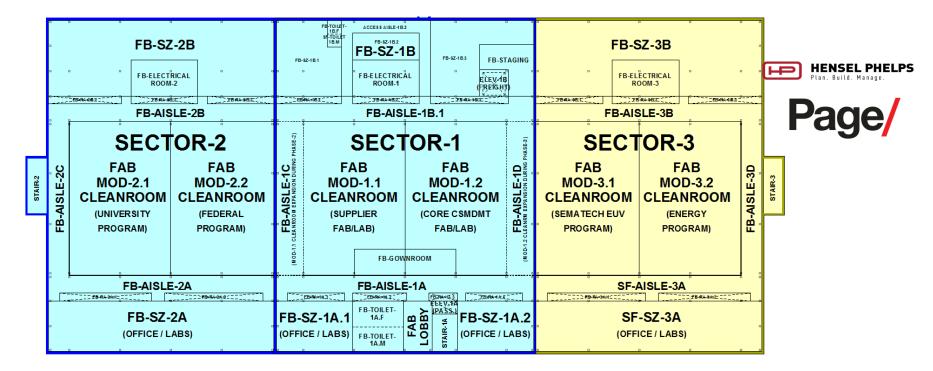
# **ICAMR Platforms** Manufacturing Development Centers (MDFs)

**ICAMR** infrastructure designed to support four phases of emerging technology manufacturing development

Phase I

**MDF for Materi** Sensors, Packagir Testing

#### Advanced Devices on S **Universal Smart Senso**


- Sensor / Photonics De integration and prototy **Adv Materials Developr**
- Support a broad range **Emerging Technologie** (BioMed, Environmental Gas, Aerospace/Defense **Adv Packaging Integrat Development Line**
- New materials
- Additive Manufacturing
- **Device/Sys Reliability**

| als,<br>1g & | Advanced<br>Energy Center           | Manufacturing<br>Competitiveness<br>Centers                                                                                                                                                                                                                                                                         | International<br>Emerging<br>Technologies |
|--------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Si -         | PV Programs                         | <ul> <li>Manufacturing Hubs/Programs</li> <li>Industry/Technology-driven initiatives</li> <li>Next Generation Manufacturing Pilot lines:</li> <li>Photonics &amp; Optics</li> <li>Packaging &amp; Reliability</li> <li>Additive Manufacturing</li> <li>NEMS/MEMS/MOEMS</li> <li>Biomedical/Microfluidics</li> </ul> | Emerging Tech Programs                    |
| rs:          | Next Gen PV (cSi & other)           |                                                                                                                                                                                                                                                                                                                     | Cyber Security                            |
| evice        | Solar Systems & Power Elect         |                                                                                                                                                                                                                                                                                                                     | BioMed Technologies                       |
| /ping        | Smart Grid & Utility Solutions      |                                                                                                                                                                                                                                                                                                                     | ESH                                       |
| ment:        | Test & Certification (World Leader) |                                                                                                                                                                                                                                                                                                                     | Nanotechnologies                          |
| e of         | Energy Storage                      |                                                                                                                                                                                                                                                                                                                     | Simulators & Models                       |
| es           | Nanotechnology in Energy            |                                                                                                                                                                                                                                                                                                                     | Roadmaps & Standards                      |
| , Oil &      | Other renewables:                   |                                                                                                                                                                                                                                                                                                                     | Joint University Centers                  |
| e,)          | - Fuel cells                        |                                                                                                                                                                                                                                                                                                                     | Workforce Development                     |
| tion         | - Wind                              |                                                                                                                                                                                                                                                                                                                     | Incubator Centers                         |

### **ICAMR** Regional Manufacturing Development Centers Partnership Opportunities

- Manufacturing technology roadmapping and standards
- Manufacturing development, prototyping and technology transfer commercialization
- Materials characterization, integration and manufacturing protocols
- Process and metrology equipment development
- Production scale-up and cost modeling
- ESH and sustainability
- Certification/test/reliability quality
- Policies/codes/permitting
- University, national labs, and international programs
- Member company application-specific support programs
- Internships and educational/workforce training programs

# ICAMR Building Layout



#### ICAMR – 100,000 sqft two level state-of-the-art R&D lab/fab facility - ~\$125M

- 43,000 sqft of cleanroom
- 30,700 sqft of elevated waffle slab / sub fab
- 15,000 sqft of lab / office area (plus addition building support areas services, loading dock,..)
- Site located on a new dedicated 220 acres research park
- All utilities (electric, water, wastewater) available to site

# **ICAMR** *Florida ICAMR Site*



# **ICAMR** Initial Program Development Platforms

- CREO
  - UCF Center for Research & Education in Optics and Lasers (College of Optics & Photonics)
- MIST NSF Hub
  - UCF MIST Center Multi-functional Integrated Systems Technology
- UCF Materials Characterization Facility (MCF)
- Florida High-Tech Corridor (UCF, USF, UF)
  - Joint economic development initiative
- Novati fab
  - Initial 200mm processing support
- Equipment supplier partner labs
- Others to be established by Q4, 2014

### **ICAMR** UCF Partnership CREOL – The College of Optics & Photonics



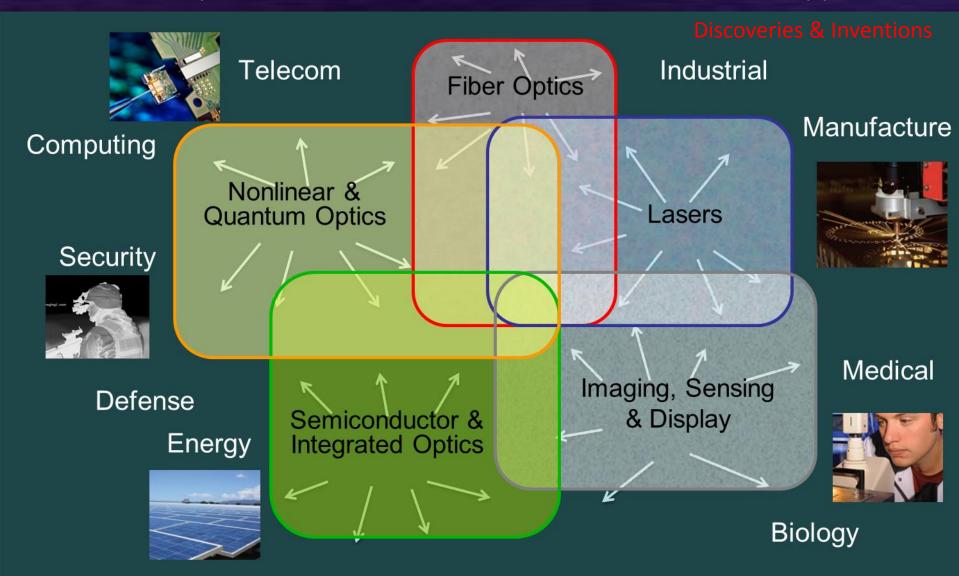
Center for Research & Education in Optics and Lasers Founded, 1987 **College of Optics & Photonics** Founded, 2004



28 faculty 14 joint faculty 32 research scientists 31 visiting scientists

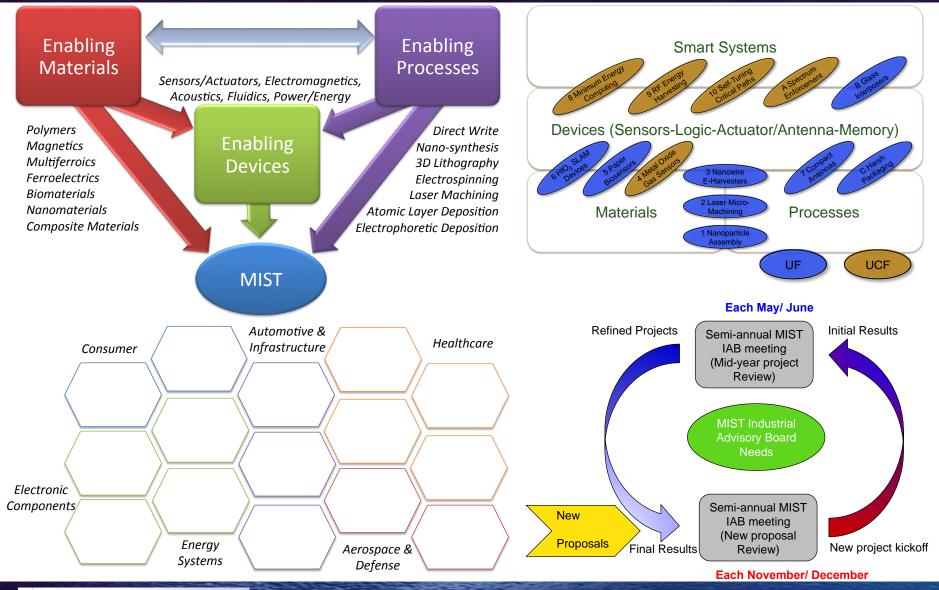


108 PhD students 26 PhD degrees 27 MS students 17 MS degrees 54 BS students


\$15M External grants



70 Industrial affiliates 6 Incubated companies




### **ICAMR** UCF Partnership CREOL – Research: Fundamental Science & Applications





# ICAMRMIST Strategic Technology / OperationsMIST Center – Multi-functional Integrated Systems Technology



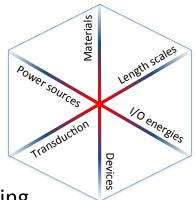


# ICAMR MIST Center

National Science Foundation (NSF) initiative – in partnership with International Industries, universities, and research centers

- Led by UF and UCF in partnership with the ICAMR
- Vision: To pioneer the "More than Moore" era by developing materials, processes, and advanced devices that enhance the functionality of integrated systems
- Approach: Industry/University partnership to explore new integrated sensor multi-functionality through diverse Center expertise: materials, length scales, I/O energies, devices, transduction, and power sources
- Expertise: 27 faculty in 6 departments/colleges (ECE, MAE, MSE, BME, CHE, Photonics) at the University of Florida and the University of Central Florida
- Value Proposition: The Multi-functional Integrated System Technology (MIST) I/UCRC serves as an intersectional innovation hub for the 'More than Moore' (MtM) and Internet of Things (IoT) era, providing research, recruiting, and relationship value to its members




# ICAMR MIST Center

- Initial projects (Top 5)
  - Technology Development for Advanced Sensors
    - chenFETs, Photonics, High Sensitivity and Harsh Environment Microsensors
  - Compact Array Antennas with High Gain and High Electromagnetic Proof Characteristics
  - Development of Metal Oxide (MOx) Semiconductor Gas Sensors
  - Laser Micromachining of 3-D Miniature Parts in Hard Materials
  - Directed Nanoparticle Assembly by Electrophoretic Deposition

### Additional projects

MIST UF FLORIDA

- Energy harvesting from ferroelectric nanowires
- Laminated paper-based analytical devices (LPAD) for health monitoring
- Ferroelectric HfO2 for Multi-Functional Sensor-Logic-Actuator-Memory Devices
- Large-Scale Multi-Modal Data Representation through Stochastic Device Switching
- RF Energy Harvesting Circuit Design and Reliability Analysis
- Self-tuning Critical Paths for Nanometer-scale CMOS Aging and PVT Mitigation
- Spectrum Enforcement using Interference Fingerprints
- Glass Interposer Technology as High Frequency System-In-Package Platform



# The Center of Innovation



Resonator



Mirror Arrays



**DSiE Vias** 



Accelerometer



Cantilever

Cu

Metalization





Deep Trench

45nm



Resonator





**MuGFET** 

3D Memory



MRAM

Wells in Silicon



Carbon Nanotubes

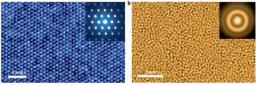


Novati is enabling novel nanotechnology development in:

- MEMS/NEMS
- **Microfluidics** •
- **Silicon Photonics** •
- III-V on Silicon
- 2.5D/3D Integration
- Non-Volatile Memory •
- High Voltage & RF •
- Image Sensors •

Isolation

# Novati - Creating Value Through Innovation


End-to-End Strategy Focused on Five Technology Areas

| V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V |                                                                                                                                                                          |                                                                                                                                               |                                                                                                                                                    | PCL#130065005 W#3051511B-08C 3um Via<br>DF-34800 5.0KV 2 9mm v2.0K SE(M) 68/2013 2000 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Novel<br>Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MEMS &<br>Microfluidics                                                                                                                                                  | Silicon<br>Photonics                                                                                                                          | III-V on Silicon<br>Integration                                                                                                                    | 2.5-D & 3-D<br>Packaging                                                                                                                                                                             |
| <ul> <li>More than 60 elements from periodic table</li> <li>More than 4 times the number of materials than other fabs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Sensors</li> <li>Oscillators</li> <li>Microphones</li> <li>Microbolo-<br/>meters</li> <li>Camera Lenses</li> <li>Inkjet Heads</li> <li>Lab-on-a-chip</li> </ul> | <ul> <li>Modulators</li> <li>Transceivers</li> <li>Avalanche Photo<br/>Detectors<br/>(APD's)</li> <li>Waveguides</li> <li>Couplers</li> </ul> | <ul> <li>DARPA (COSMOS &amp; DAHI)</li> <li>InP &amp; GaN</li> <li>RF, Power &amp; Photonics</li> <li>Monolithic and Hybrid integration</li> </ul> | <ul> <li>Licensed<br/>Ziptronix -<br/>ZiBond<sup>®</sup> and<br/>DBI<sup>®</sup> technology</li> <li>TSV's</li> <li>Wafer Lids</li> <li>Tezzaron -<br/>FaStack<sup>®</sup><br/>technology</li> </ul> |

# **ICAMR** UCF Materials Characterization Facility (MCF)

- Began as Partner/Back-Up Facility for Lucent Technologies in late 1990's
- Continuous Update on Instrumentation and Capability
- Expanded User-base to:
  - Materials Science and Engineering
    - Metals and Alloys
    - Ceramics
    - Polymers
    - Semi-Conductors/Thin Films
    - Composites
  - Nanoscience and Technology
  - Physics and Chemistry
  - Optics and Photonics
  - Civil, Biology, and Biomedical
- Supported by 1 Faculty Associate Director, 3 Technical Staff and 1.5 Administrative Staff.
- Annual User-base of Over 200 (15% External)















### ICAMR UCF Materials Characterization Facility (MCF)

- SEM (Scanning Electron Microscope) Zeiss Ultra 55 with E-and SA-BSE, STEM, e-Litho JEOL 6480LV with BSE, EDS and EBSD
- **TEM (Transmission Electron Microscope)**
- FIB (Focused Ion Beam)
- SIMS (Secondary Ion Mass Spectroscopy) ٠
- **RBS (Rutherford Backscattering Spec)** ٠
- **AES (Auger Electron Spectroscopy)** ٠
- XPS (X-ray Photoelectron Spectroscopy) ٠
- **EPMA (Electron Probe Micro-Analysis)** •
- XRD
- **Specimen Preparation**

Hitachi S3500N VP-SEM with BSE and EDS

Tecnai F30 300KeV with EDS, STEM, HAADF

JEOL 1011 TEM with EDS

Zeiss CrossBeam 1540EsB with SE, BSE, EDS, In-Situ Lift-Out FEI 200TEM with In-Situ Lift-Out

- CAMECA IMS-3F and PHI 6300
  - **1.7MV Tandetron TBS Accelerator** 
    - **Physical Electronics 600**
  - **Physical Electronics 5400 ESCA**

JEOL 733 with Four Crystals

**Rigaku DMAX-B wih Laue Back Reflection Pattern Capability Rigaku DMAX-B Thin Film Capability** New Unit (TBD) will be Acquired via Recent ONR-DURIP Award

Gatan PECS (Coating System), Ion Milling, Ultra Microtome, Sputter Coater, Vacuum Evaporator/Carbon Coater, Diamond, ElectroJet Polisher, Dimple Grinder, Allied Polisher, Buehler VibroMet

# **ICAMR** *Potential Participants*

- International Consortium potential partners
  - imec, HOLST, TNO, Fraunhofer, Leti, Philips
- Potential U.S. program partners (European partners to be identified)
  - Harris Corporation, Lockheed Martin, Jabil, DRS Technologies, TI, Boeing, Intersil, BAE Systems, Johnson Controls, GE, Valleo, Honeywell, Johnson & Johnson, Shell, BP, Schlumberger, Northrop, TriQuint, Medtronic, St. Jude, and many others
- Supply chain potential partners
  - ASMI, TEL, Applied Materials, Aixtron, KLA-Tencor, many others
- Processing, Technology and Infrastructure Support
  - imec, ASMI, Novati, TNO / HOLST, Leti, Page, Hensel Phelps, others
- Universities and Institutes
  - UCF, University of Florida, University of South Florida, University of Texas, many others
  - Florida Medical Centers, Texas System Medical Center, Methodist Research Hospital
  - International universities, institutes, and medical centers
- Other key potential partners
  - DARPA / DOD, NIST, NSF / National Labs, Florida Power and Light, Duke Energy, others

# ICAMR

### All Four Development & Manufacturing Centers

#### iCAMR Projected Funding Requirements

| <u>Centers (\$K)</u>         | Funding: | <u>Industry</u> | ** <u>Supply (</u> | Chain**       | Gov           | Agencies    | <u>Florida</u>  | <u>Total</u> |
|------------------------------|----------|-----------------|--------------------|---------------|---------------|-------------|-----------------|--------------|
| * CSMDMT [Phase I]           |          | 25,0            | 00                 | 25,000        |               | 25,000      | 226,000         | \$301,000    |
| Advanced Energy              |          | 15,0            | 00                 | 15,000        |               | 15,000      | 5,000           | \$50,000     |
| Manufacturing Competiti      | veness   | 20,0            | 00                 | 20,000        |               | 30,000      | 5,000           | \$75,000     |
| International Emerging Te    | ech Ctr  | 20,0            | 00                 | 20,000 30,000 |               | 30,000      | 5,000           | \$75,000     |
| Total                        |          | \$80,00         | 0 \$               | 30,000        | \$100,000     |             | \$241,000       | \$501,000    |
| Investment (\$K)             |          | <u>Year 1</u>   | <u>Year</u>        | 2             | <u>Year 3</u> | <u>Year</u> | <u>4 Year 5</u> | <u>Total</u> |
| Industry (Mfrs / Supply C    | hain)    | 2,000           | 20,00              | D             | 35,000        | 50,00       | 0 53,000        | \$160,000    |
| Government Agencies          |          | 3,000           | 15,00              | D             | 20,000        | 25,00       | 0 37,000        | \$100,000    |
| Florida                      |          | 116,000         | 50,00              | 0             | 25,000        | 25,00       | 0 25,000        | \$241,000    |
| Total                        |          | \$121,000       | \$85,000           | \$8           | 80,000        | \$100,000   | \$115,000       | \$501,000    |
| <u>Use of Funds (\$K)***</u> |          | <u>Year 1</u>   | <u>Year</u>        | <u>2</u>      | <u>Year 3</u> | <u>Year</u> | <u>4 Year 5</u> | <u>Total</u> |
| CSMDMT [Phase I]             | [        | 116,000         | 61,00              | D             | 39,000        | 41,00       | 0 44,000        | \$301,000    |
| Advanced Energy              |          | 2,000           | 12,00              | 0             | 12,000        | 12,00       | 0 12,000        | \$50,000     |
| Manufacturing Competiti      | veness   | 1,000           | 6,00               | D             | 14,000        | 22,00       | 0 32,000        | \$75,000     |
| International Emerging Te    | ech Ctr  | 2,000           | 6,00               | 0             | 15,000        | 25,00       | 0 27,000        | \$75,000     |
| Total                        |          | \$121,000       | \$85,000           | \$8           | 80,000        | \$100,000   | \$115,000       | \$501,000    |

\* Phase I ICAMR launch is foundational for substantial development growth and the creation of three additional centers

- \*\* Program Participation, Equipment Donations, Equipment Discounts, Intellectual Property, Fab / Lab Usage, Assignees from Participants, Industry Contracts (focus on Florida), International Programs, Emerging Technologies, Start-ups Support
- \*\*\* Program Spending includes labor, processing, lab costs, direct project costs, OVHD, IP, computing, and consortia/operations support

# **ICAMR** Status and Next Steps

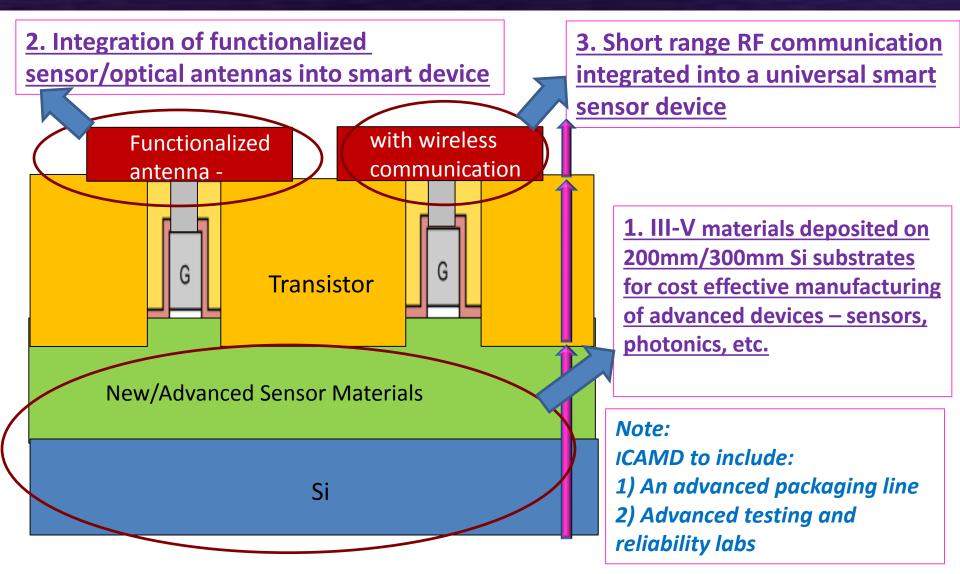
- ✓ Year 1 infrastructure and operational funding secured, >\$125M
- ✓ Initial ICAMR building design complete, construction procurement process started
- ✓ Core consortium management team secured
- ✓ Launched initial efforts to attract government funding with two major U.S.
   Department of Defense submissions for \$150M
- ✓ Public announcement and official launch planned for August
- Secure international research institution and processing partner(s)
  - Align efforts to best leverage ICAMR and partnership programs and infrastructure
- Engage / recruit US and international industry
  - Key sensor industry product and equipment manufactures, supply chain and end-users
- Establish consortium governance team
- Launch roadmapping initiative standards activities to follow
- Define and launch initial programs (Initial work to be accomplished at partner/member sites)
- Develop internships and educational/training programs
- Expand funding channels (state, national hubs, industry, JDPs,.)

# ICAMR

### International Collaboration to Solve the Many Challenges

- Success in emerging technologies is driven by development and innovation that lead to advances in manufacturing
- Success depends on comprehensive national and international collaborations
  - Challenges are global, and cut across industry ecosystem
  - Solutions require significant investment, leveraged funding

| Trade<br>Associations | National /<br>International<br>Laboratories | Technology<br>Focused<br>Research<br>Centers/Hubs | Industry-led<br>Research<br>Programs | Industry-led<br>Consortia |
|-----------------------|---------------------------------------------|---------------------------------------------------|--------------------------------------|---------------------------|
|-----------------------|---------------------------------------------|---------------------------------------------------|--------------------------------------|---------------------------|


- The regions of the world that have the wisdom and confidence to spearhead these collaborations will be the leaders in manufacturing of the future disruptive and revolutionary devices and systems
- ICAMR well positioned for the multi-trillion dollar next-generation emerging technology market
  - Sensors, photonics, advanced materials & emerging technologies industries are key to the world's economies
  - > Federal Government interested in further utilizing consortium model for key technologies & manufacturing
  - Consortia model is strong critical need for accelerated and collaborative R&D in the emerging technology

# Back - up

## **ICAMR** *Targeted Industry Markets and Technologies*

- Enhance strong international collaboration in sensors/photonics/materials sectors
   Florida making substantial investment in infrastructure and industry-led consortium
- Global industry technology leaders (Intel, Samsung, TEL,...) and business analysis experts (Garner, VLSI Research,...) agree that the next disruptive market explosion will be "semiconductor-based" connected devices – led and enabled by the production of advanced sensor devices
  - By 2017, smart sensors will be the dominant product for semiconductor manufacturing
  - Pervasiveness of sensors will be catalyst for growth & technology advances in nearly all industries
     Aerospace and National Defense
     Manufacturing
     Oil and Gas
     Agriculture
     Communications
     Manufacturing
     Manufacturing</l
- Pervasive computing / Internet of Things (IoT) represents a \$1.9T (Gartner) opportunity by 2020 and a \$100B (VLSI) opportunity for semiconductors ... (a 30% expansion of the industry of the premier technology industry)
  - By 2017, 50% of IoT will originate in startups less than 3 years old
  - The Internet of Things will have a broad scale impact across the economy, affecting consumers, enterprise, and government
    - → By 2020 over 50 billion devices will be connected by sensors

### ICAMR Universal Smart Sensor Fabrication Integration Strategy

