Optimizing Traffic Signal Timings to Reduce Fuel Consumption

Florida Energy Systems Consortium

Aleksandar Stevanovic, PhD, PE

Tampa, FL September 30, 2009

Sustainable Transportation

- Moves people, goods and information in ways that reduce its impact on the environment, the economy, and society.
- Promotes non-traditional ways of transport such as public transport, cycling and walking facilities.
- Advocates reduction in fuel consumption and use of cleaner fuels and technologies.

Challenges of Sustainable Traffic Control

Provide Priority for Transit

Reduce Vehicular Emissions

Improve Traffic Flow

Arterial Speed Profile & Fuel Consumption

- Objectives for Minimal Fuel Consumption
 - Minimal delay (waiting time)
 - No stops
 - Uniform speed ~ 35-45 mph

Signal Timing Parameters

Fuel Consumption & Traffic Signals

- Cycle Lengths
 - Higher CL provide more capacity but cause more delays per each vehicle in the network (+ FC)
 - Very low CL cause extreme delays (++ FC)
- Splits
 - Should be equivalent to the demand for each movement (phase) – if inappropriate cause cycle failure – a vehicle needs to wait for one more cycle (+ FC)
- Offsets

Impact progression (# of stops) of the major traffic movements between intersections – the most important parameter to reduce FC

Scoping of a Signal Timing Project

Source: Signal Timing Manual, FHWA 2008

Early Research on Minimizing FC

- Robertson, D.I., Lucas, C.F., Baker, R.T. (1980). "Coordinating traffic signals to reduce fuel consumption." Transport Research Laboratory (TRL) Report – LR934
- Concept of Performance Index PI = Delay + W* Stops
- Lowest FC achieved when a stop is worth 40 seconds of waiting time (delay) (Robertson et al.)
- Signal timings optimized (in TRANSYT 8) to minimize fuel consumption
- Benefits of such signal timings may decrease fuel consumption by up to 3%
- FC estimated from its linear relationship with delay, stops, and average speed

FC Estimation in Current Tools

Optimization Process (PI, Delay, etc.)

FC Estimation Process

Current Practice

- Tools: SYNCHRO & TRANSYT-7F (and similar)
- Macroscopic and analytical tools (no individual driving behavior)
- FC not used as an objective function in optimization
- Very simplistic relationships between overall traffic activity in the area and fuel consumption
- FC not based on cyclical engine loads
- No ability to account for various vehicular technologies (new vs old) and different vehicle types (heavy, diesel, ...)

Current Practice - Fuel Consumption

- FC = Total Travel * k1 + Total Delay * k2 + Stops * k3
- k1 = 0.075283 0.0015892 * Speed + 0.000015066 * Speed^2
- k2 = 0.7329
- k3 = 0.000061411 * Speed ^ 2
- FC= Fuel Consumption [gal]
- Speed = Cruise speed [mph]
- Total Travel = Vehicle-miles traveled [veh-mil]
- Total Delay = Total signal delay [hours]
- Stops = Total stops [veh/hour]

VISSIM-CMEM-VISGAOST Integration

Comprehensive Modal Emission Model

University of California - Riverside

FC & Emission Scenarios in CMEM

- Stoichiometric Cruise Section
- Constant Power Section
- Constant Acceleration Section
- Air Conditioning Hill Section
- Repeat Hill Cruise Section

VISGAOST - Basic Steps

Test-bed Network

Why 2-intersection Network?

- Simplest coordinated operations
- Low number of signal timings to optimize
 - Short computational time increased chances to find an 'optimum' (local or global)
 - Ability to understand what is going on after an optimal solution is found
- Properly calibrated and validated network
- Relatively heavy side-street traffic
- Different speeds on main & side streets

Calibration & Validation Results

FC Change during PI Optimization

Optimizing FC in Delay & Stops Space

Pls with various weights for stops

Delay & Stops for Synchro's Solution

Various Objective Functions - Minimize FC

Fuel Consumptions per Mile during Various Optimizations

Conclusions

- FC can be reduced 5-10% when FC is minimized (used as an objective function) instead of minimizing surrogate performance measures
- FC for each case might be unique, and depends on:
 - Side-street and main street: traffic volumes and speed limits
 - % of heavy vehicles, terrain, AC usage, ...
- FC optimizations very time consuming
- Need to investigate if there is a better surrogate performance measure
- Interest to reduce FC in traffic community still low

The End

Questions & Comments?