## FLORIDA SOLAR ENERGY CENTER

Creating Energy Independence Since 1975

# **Energy Efficiency**

## The First Priority in Solving Energy Issues

## Rob Vieira, Director, Buildings Research

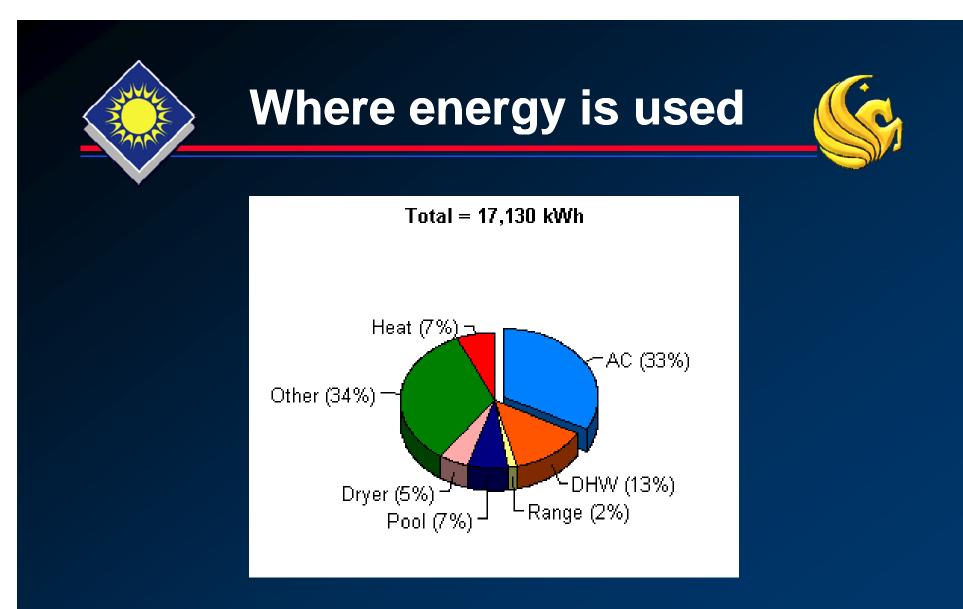
A Research Institute of the University of Central Florida





## The big picture!

- Building energy is
   27% of average per
   person carbon
   emissions
- More than transportation!
- Five times as much as our own energy source (food!)






## Opportunity met with FESC



- Use past research funded by DOE and utilities to guide direction.
- Assist local governments and non-profits in performing retrofits to housing stock.
- Leverage new funds from USDOE's Building America program for new research and implementation efforts.



**Reference Publication:** Parker, D. S., "Research Highlights from a Large Scale Residential Monitoring Study in a Hot Climate. " Proceeding of International Symposium on Highly Efficient Use of Energy and Reduction of its Environmental Impact, pp. 108-116, Japan Society for the Promotion of Science Research for the Future Program, JPS-RFTF97P01002, Osaka, Japan, January 2002. (Also published as FSEC-PF369-02, Florida Solar Energy Center, Cocoa, FL.)



## **Methodologies**



Field Research/Implementation with counties/cities
 Run Simulations to estimate savings
 Laboratory Research
 New flex lab buildings

## Opportunity met with FESC

Government Partners
 Sarasota (City & County
 Brevard County
 Orange County
 Alachua County
 Volusia County (Potential Partner)

## Opportunity met with FESC

#### Non Profits

#### > Habitat for Humanity International

 3 Site "Weatherization" Pilot – Dallas, Chicago, and Philadelphia

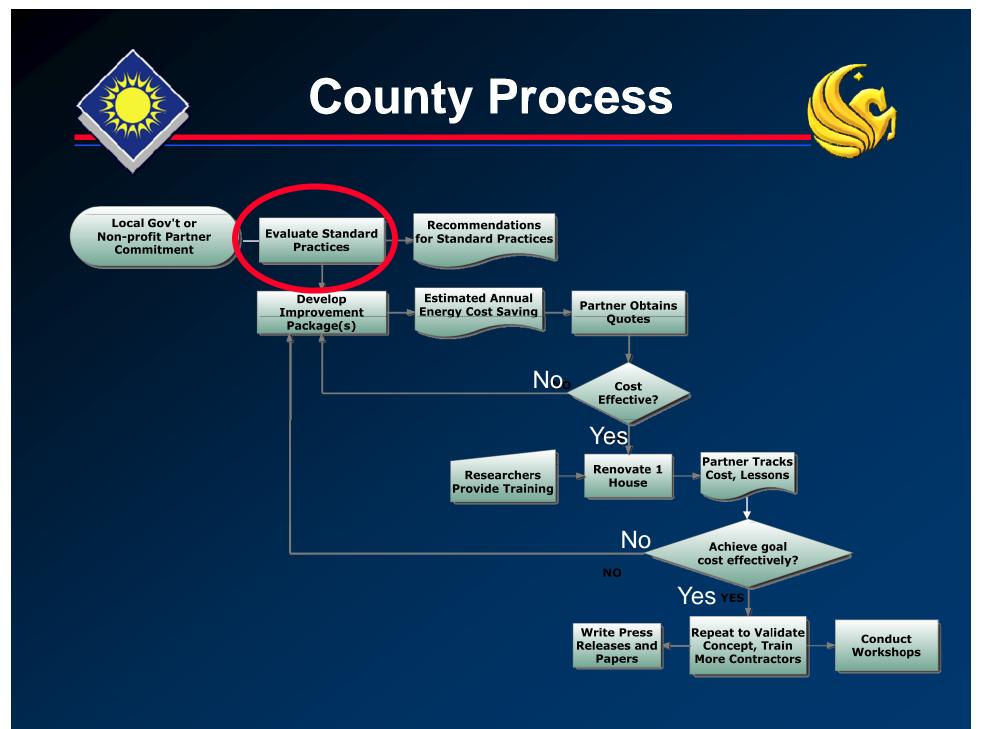
#### NSP2 Proposal - 4 Florida sites

- > HFH Partners Participating in NSP1
  - HFH Broward County (FL)
  - HFH of Lakeland FL
  - Sarasota HFH



#### How it works




- Counties purchase houses (NSP, HOME, or other funds)
- Counties Renovate or Partner with Non-profits who Renovate
- Houses returned to market
- Building America Goal
  - Cost effectively reach
  - DOE's Builders Challenge
    - HERS Index of 70
    - Mandatory Quality Criteria
    - 3rd party certification
    - <u>http://www1.eere.energy.gov</u> /buildings/challenge/

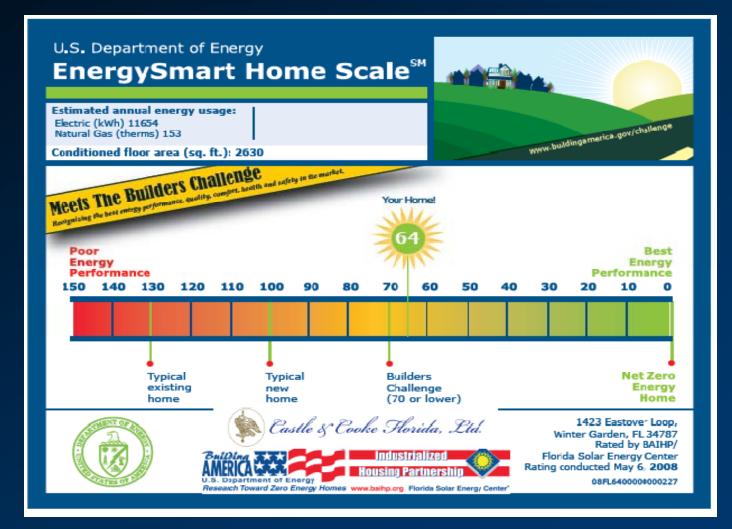




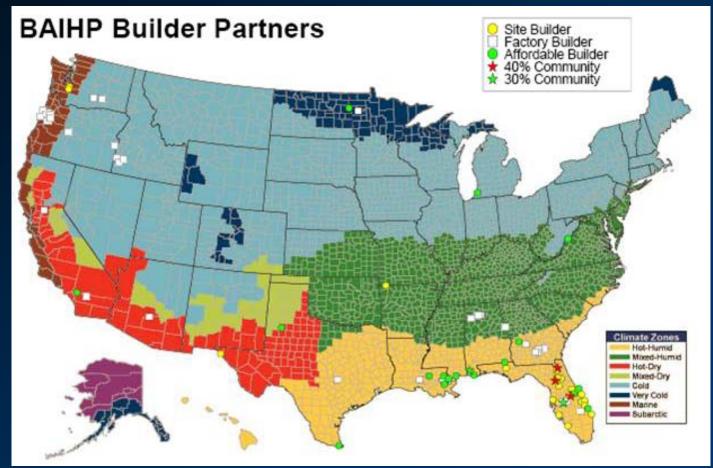







# Building America Program

Homes that use less energy
Improve indoor air quality and




- comfort –reduce home issues...increase owner satisfaction and living environment
- Efficient home-building process
- Implement innovative energy- and materialsaving technologies
- Dramatically increase the energy efficiency of existing homes

## E-Scale and The Builders Challenge







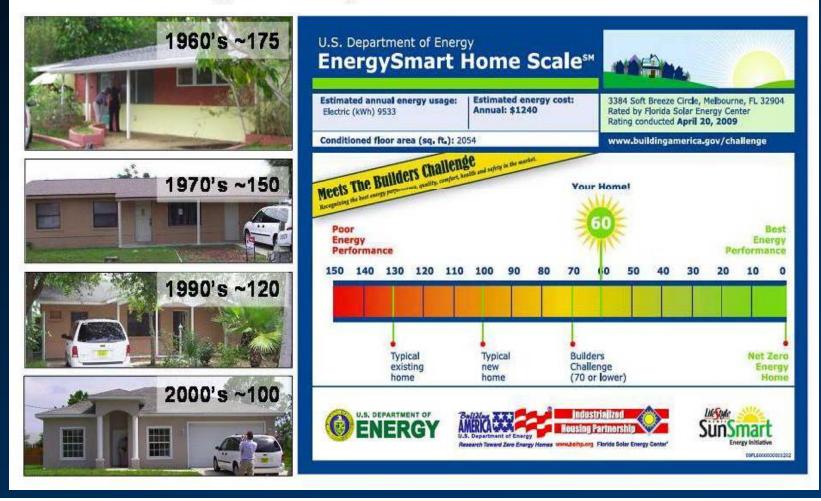


#### Now DOE is looking at existing homes – can we achieve good energy efficiencies here too?





#### **Retrofit Task**




- Current housing stock is often far less efficient than new homes.
- We're in the fact finding stage modeling 1960's, 1970's, 1990's and 2000's built homes to:
  - > Determining basic home envelopes
  - Modeling efficiencies to determine best energy efficient scenarios



# "Scoring" existing homes

#### Typical Existing Homes HERS Indices





# Why look at existing homes?

 108 million homes
 Low hanging fruit:
 Cost-effective measures can be implemented

Put subcontractors to work





#### **Find the Problems**



- Combustion safety
- Mold, rot, wet materials
- > Asbestos, unsafe electrical, lead paint
- Broken equipment, appliances, windows, pipes
- > Worn out roof, flooring, fixtures, cabinets
- Financial challenge
  - Improvement Cost vs Selling Price
    - Homes will be sold to buyers at 50% AMI
    - Sale price = Purchase + Repairs

Little money left for efficiency improvements
FSEC will provide analysis of improvements



## Hypothetical Existing Homes Analysis



For 4 Hypothetical Houses > 1960's, 1970's, 1990's Large, 1990 Medium Characterized "Typical" Existing Homes > Energy audits, past research, historic code requirements, input from realtors Characterized "Typical" Improvement Level Market ready with minimum investment Developed Builders Challenge Package Reviewed with Each Partner



#### Hypothetical 1966 Existing Home Analysis



| As-Found Characteristics |                                            |                       |  |  |
|--------------------------|--------------------------------------------|-----------------------|--|--|
| Parameter                | Description                                | Efficiency            |  |  |
| Roof                     | Dark color, past useful life               | Absorptance = 0.92    |  |  |
| Exterior Walls           | Concrete Block, Medium Color Absorptance = |                       |  |  |
| Ceiling Insulation       | Minimal Insulation R –11                   |                       |  |  |
| Windows                  | Single, clear glass                        | U value 1.2, SHGC 0.8 |  |  |
| Floors                   | 70/30 Carpet/vinyl                         | 0                     |  |  |
| Heating System           | Electric Heat Strip                        | COP 1                 |  |  |
| Cooling System           | Straight cool, need replacement SEER = 7   |                       |  |  |
| Ducts/Return             | Leaky ducts – unsealed return plenum       | QN = 0.2              |  |  |
| Water Heater             | Old, electric EF = 0.81                    |                       |  |  |
| Lighting                 | 100% incandescent lighting                 | N/A                   |  |  |
| Appliances               | Old and need replacement                   | N/A                   |  |  |
| Infiltration             | Very leaky                                 | ACH50=13              |  |  |

E-Scale = 175 and annual energy costs of \$2179

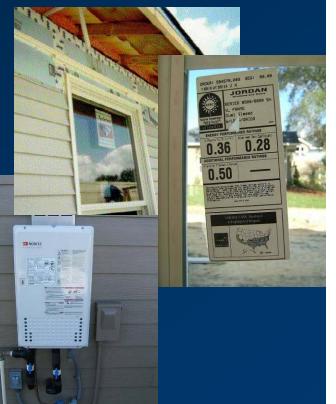


#### Typical 1966 Existing Home Analysis



| Typical Investor Improvements |                             |                    |  |  |
|-------------------------------|-----------------------------|--------------------|--|--|
| Parameter                     | Description                 | Efficiency         |  |  |
| Roof                          | New Dark or Medium Shingles | Absorptance= 0.92  |  |  |
| Exterior Walls                | New Medium Paint            | Absorptance = 0.75 |  |  |
| Ceiling Insulation            |                             |                    |  |  |
| Windows                       |                             |                    |  |  |
| Floors                        | New vinyl and carpet        |                    |  |  |
| Heating System                | New Elec Resistance         | COP = 1            |  |  |
| Cooling System                | New Straight Cool           | 13 SEER            |  |  |
| Ducts/Return                  |                             |                    |  |  |
| Water Heater                  |                             |                    |  |  |
| Lighting                      |                             |                    |  |  |
| Appliances                    | New Typical Appliances      | Default Efficiency |  |  |
| Infiltration                  |                             |                    |  |  |

Estimated Cost of Retrofit = ~\$15,208


**E-Scale = 144 and annual energy cost of \$1,838 (\$341 savings)** 20



Now...identify priorities for energy efficiency improvement...

✤ New A/C? Attic Insulation? High efficiency Windows? Reflective roofing? Solar hot water? Ceiling fans? Seal ducts? Weatherizing?





and a second s



#### **Select alternatives**



- Improve household element from top to bottom
- But include flexibility





- Choose from a list: Eg. Roof/hot climate
  - Radiant barrier with attic ventilation
  - More insulation
  - Reflective surfaces with sealed attic & deck insulation



#### Typical 1966 Existing Home Analysis



| Builders Challenge Improvement Package |                                          |                        |  |  |
|----------------------------------------|------------------------------------------|------------------------|--|--|
| Parameter                              | Description                              | Efficiency             |  |  |
| Roof                                   | Choose Light Color Shingle               | Absorptance= 0.75      |  |  |
| Ceiling Insulation                     | Add insulation to Reach                  | R – 30                 |  |  |
| Windows                                | New Energy Star Windows                  | U 0.40, SHGC 0.35      |  |  |
| Floors                                 | Replace Vinyl with Tile                  | Improved heat transfer |  |  |
| Heating System                         | Now Hoot Dump                            | HSPF 8.2               |  |  |
| Cooling System                         | New Heat Pump                            | 14 SEER                |  |  |
| Ducts/Return                           | New Duct System                          | QN = 0.03              |  |  |
| Water Heater                           | New Electric Tank + ICS Solar DWH        |                        |  |  |
| Lighting                               | 75% CFL                                  |                        |  |  |
| Appliances                             | New EnergyStar Refrigerator & Dishwasher |                        |  |  |
| Infiltration                           | Seal Exterior Envelope                   | ACH50 = 6              |  |  |
| Ventilation                            | Passive Runtime Ventilation System       | 30cfm                  |  |  |

**Estimated INCREMENTAL Cost = \$10,643** 

E-Scale = 69 and annual energy cost of \$809 (\$1,029 incremental savings)



#### **First Year Cash Flow**



|                                                     | First<br>Cost | Annual Cost<br>(7%, 30 yr<br>mortgage) |
|-----------------------------------------------------|---------------|----------------------------------------|
| Total Incremental<br>Cost                           | \$10,643      | \$849                                  |
| Estimated Annual<br>Energy Savings (wrt<br>typical) |               | \$1,029                                |
| Net 1 <sup>st</sup> Year Cash flow                  |               | \$180                                  |





## Find the problems





#### Floor joists open to attic

#### Infrared – Winter morning







# **Installation Deficiencies**

#### Floor joist open to attic

#### **Infrared** -Summer





Installation Deficiencies

#### Floor joist open to attic

#### **Infrared** -Summer





# Installation Deficiencies

#### Kneewall batt installation

#### **Infrared** -Summer







 Two identical residential scale buildings to be built at UCF's Cocoa facility.







 Each will be able to be reconfigured.
 Structure for supporting roof will be independent of thermal walls.

 Windows distributed on four sides







#### Initial configuration:

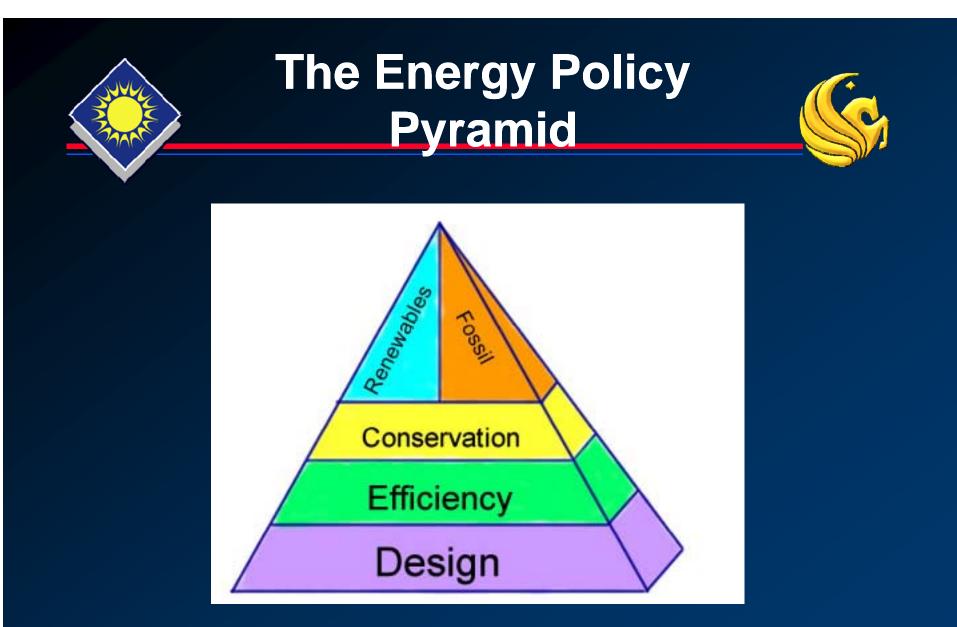
- Each will be set to typical 1960s residence.
- One will be kept as control
- > Other will receive retrofits.
- Detailed monitoring plan consistent with BA NREL protocol.







 Later configurations:
 Control set to Florida code
 Experiment set to 50 -70% efficiency improvement








- Experiments: > Windows > Walls > Floor Covering > Equipment combinations – **HVAC/duct** 
  - > Internal loads





Build the Energy Policies from the Bottom Up

# FLORIDA SOLAR ENERGY CENTER

Creating Energy Independence Since 1975

# **Energy Efficiency**

## The First Priority in Solving Energy Issues

#### robin@fsec.ucf.edu

A Research Institute of the University of Central Florida

